Objective: Female gender is associated with reduced tolerance against acute ischemic events and a higher degree of left ventricular hypertrophy under chronic pressure overload. We tested whether female and male rats with left ventricular hypertrophy present the same susceptibility to demand ischemia.
Methods: Hearts from hypertrophied female and male salt-resistant and salt-sensitive Dahl rats (n=8 per group) underwent 30min of demand ischemia induced by rapid pacing (7Hz) and an 85% reduction of basal coronary blood flow, followed by 30min of reperfusion on an isovolumic red cell perfused Langendorff model.
Results: In female hearts, high-salt diet induced a pronounced hypertrophy of the septum (2.38+/-0.09 vs 2.17+/-0.08mm; p<0.01), whereas male hearts showed the greatest increase in the anterior/posterior wall of the left ventricle (LV) (3.19+/-0.22 vs 2.01+/-0.16mm; p<0.05) compared with salt-resistant controls. At baseline, LV-developed pressure/g LV was significantly higher in female than male hearts (200+/-13 and 196+/-14 vs 161+/-10 and 152+/-15mmHgg(-1); p<0.01), independent of hypertrophy, indicating greater contractility in females. During ischemia, LV-developed pressure decreased in all groups; at the end of reperfusion, hypertrophied female and male hearts showed higher developed pressures independent of gender (148+/-3 and 130+/-8 vs 100+/-7 and 85+/-6mmHg; p<0.01). In contrast, diastolic pressure was more pronounced in female than in male hypertrophied hearts during ischemia and reperfusion (24+/-3 vs 12+/-2mmHg; p<0.01).
Conclusions: In the pressure overload model of the Dahl salt-sensitive rat, female gender is associated with a more pronounced concentric hypertrophy, whereas male hearts develop a more eccentric type of remodeling. Although present at baseline, after ischemia/reperfusion systolic function is gender-independent but more determined by hypertrophy. In contrast, diastolic function is gender-dependent and aggravated by hypertrophy, leading to pronounced diastolic dysfunction. We can conclude that in the malignant setting of demand ischemia/reperfusion gender differences in hypertrophied hearts are unmasked: female hypertrophied hearts are more susceptible to ischemia/reperfusion than males. To determine whether in female hypertensive patients with acute coronary syndromes, diastolic dysfunction could contribute to the worse clinical course, further experimental and clinical studies are needed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejcts.2006.10.041 | DOI Listing |
Front Transplant
February 2025
Service de néphrologie et transplantation, Hôpitaux Universitaires de Genève, Genève, Switzerland.
The growing disparity between the demand for pancreas transplants and the availability of suitable organs underscores the urgent need for innovative donor strategies, including the utilization of donors after circulatory death (DCD). This scoping review presents a comprehensive comparative analysis of transplantation outcomes between DCD and donors after brain death (DBD), focusing on pancreatic graft survival, postoperative complications, and functional metrics such as graft performance and HbA1c levels. Although DCD grafts were suspected to be associated with higher rates of early complications, including delayed graft function and thrombosis, altogether resulting from potentially more ischemia-reperfusion injuries, their long-term outcomes are comparable to those of DBD grafts.
View Article and Find Full Text PDFJ Nucl Cardiol
March 2025
Department of Nuclear Medicine, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, China. Electronic address:
Mol Cell Endocrinol
March 2025
CNC-UC - Center for Neurosciences and Cell Biology, University of Coimbra, Portugal; Department of Physics, UTAD, Vila Real, Portugal. Electronic address:
Hypoxia can lead to severe consequences for brain function, particularly in regions with high metabolic demands such as the hippocampus. Excessive production of reactive oxygen species (ROS) during hypoxia can initiate a cascade of oxidative stress, evoking cellular damage and neuronal dysfunction. Most of the studies characterizing the formation of ROS are performed in the context of ischemia induced by oxygen-glucose deprivation, thus, the role of hypoxia in less severe conditions requires further clarification.
View Article and Find Full Text PDFAcc Chem Res
March 2025
Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States.
ConspectusThe author presents his personal story from early contributions in purinergic receptor research to present-day structure-guided medicinal chemistry. Modulating purinergic signaling (encompassing pyrimidine nucleotides as well) and other nucleoside targets with small molecules is fruitful for identifying new directions for therapeutic intervention. Purinergic signaling encompasses four adenosine receptors, eight P2Y receptors that respond to various extracellular nucleotides, and trimeric P2X receptors that respond mainly to ATP.
View Article and Find Full Text PDFJ Pharmacol Exp Ther
February 2025
Discovery Chemistry, Janssen R&D, Spring House, Pennsylvania.
Acute kidney injury (AKI) is characterized by an abrupt decline in kidney function and has been associated with excess risks of death, kidney disease progression, and cardiovascular events. The kidney has a high energetic demand with mitochondrial health being essential to renal function, and damaged mitochondria have been reported across AKI subtypes. 5' Adenosine monophosphate-activated protein kinase (AMPK) activation preserves cellular energetics through improvement of mitochondrial function and biogenesis when ATP levels are low, such as under ischemia-induced AKI.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!