A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Extracellular matrix formation and mineralization on a phosphate-free porous bioactive glass scaffold using primary human osteoblast (HOB) cells. | LitMetric

Sol-gel derived bioactive glasses of the 70S30C (70mol% SiO2, 30mol% CaO) composition have been foamed to produce 3D bioactive scaffolds with hierarchical interconnected pore morphologies similar to trabecular bone. The aim of this study was to investigate primary human osteoblast response to porous bioactive glass scaffolds. The scaffolds supported osteoblast growth and induced differentiation, within the 3-week culture period, as depicted by enhanced ALPase enzymatic activity, without the addition of supplementary factors such as ascorbic acid, beta-glycerophosphate and dexamethasone. This is the first time this has been observed on a bioactive glass that does not contain phosphate. Deposition of extracellular matrix was also confirmed by enhanced production of the extracellular matrix protein collagen type I. SEM showed indications of mineralized bone nodule formation without the addition of growth factors. The 70S30C bioactive glass scaffolds therefore fulfil many of the criteria for an ideal scaffold for bone tissue engineering applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biomaterials.2006.11.022DOI Listing

Publication Analysis

Top Keywords

bioactive glass
16
extracellular matrix
12
porous bioactive
8
primary human
8
human osteoblast
8
glass scaffolds
8
bioactive
6
matrix formation
4
formation mineralization
4
mineralization phosphate-free
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!