Population models with singular equilibrium.

Math Biosci

Howard University, 6-th Str., Washington, DC 20059, USA.

Published: July 2007

A class of models of biological population and communities with a singular equilibrium at the origin is analyzed; it is shown that these models can possess a dynamical regime of deterministic extinction, which is crucially important from the biological standpoint. This regime corresponds to the presence of a family of homoclinics to the origin, so-called elliptic sector. The complete analysis of possible topological structures in a neighborhood of the origin, as well as asymptotics to orbits tending to this point, is given. An algorithmic approach to analyze system behavior with parameter changes is presented. The developed methods and algorithm are applied to existing mathematical models of biological systems. In particular, we analyze a model of anticancer treatment with oncolytic viruses, a parasite-host interaction model, and a model of Chagas' disease.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mbs.2006.10.006DOI Listing

Publication Analysis

Top Keywords

singular equilibrium
8
models biological
8
population models
4
models singular
4
equilibrium class
4
class models
4
biological population
4
population communities
4
communities singular
4
equilibrium origin
4

Similar Publications

Hydrophobicity is associated with drug transport across membranes and is expressed as the partition coefficient log P for neutral drugs and the distribution coefficient log D for acidic and basic drugs. The log P and log D predictions are deductively (or with artificial intelligence) estimated as the sum of the partial contributions of the scaffold and substituents of a single molecule and are used widely and affirmatively. However, their predictions have not always been comprehensively accurate beyond scaffold differences.

View Article and Find Full Text PDF

Intelligent vehicle trajectory tracking with an adaptive robust nonsingular fast terminal sliding mode control in complex scenarios.

Sci Rep

December 2024

School of Vehicle and Energy, Yanshan University, 438 West Hebei Avenue, Qinhuangdao, 066004, People's Republic of China.

This study presents a strategy for an intelligent vehicle trajectory tracking system that employs an adaptive robust non-singular fast terminal sliding mode control (ARNFTSMC) approach to address the challenges of uncertain nonlinear dynamics. Initially, a path tracking error system based on mapping error is established, along with a speed tracking error system. Subsequently, a novel ARNFTSMC strategy is introduced to tackle the uncertainties and external perturbations encountered during actual vehicle operation.

View Article and Find Full Text PDF

Spontaneous emission is one of the most fundamental out-of-equilibrium processes in which an excited quantum emitter relaxes to the ground state due to quantum fluctuations. In this process, a photon is emitted that can interact with other nearby emitters and establish quantum correlations between them, e.g.

View Article and Find Full Text PDF

Enzyme kinetics simulation at the scale of individual particles.

J Chem Phys

November 2024

School of Mathematics, Monash University, Clayton, Victoria 3800, Australia.

Enzyme-catalyzed reactions involve two distinct timescales: a short timescale on which enzymes bind to substrate molecules to produce bound complexes and a comparatively long timescale on which the molecules of the complex are transformed into products. The uptake of the substrate in these reactions is the rate at which the product is made on the long timescale. Models often only consider the uptake to reduce the number of chemical species that need to be modeled and to avoid explicitly treating multiple timescales.

View Article and Find Full Text PDF

Influences of time delay and connection topology on a multi-delay inertial neural system.

Cogn Neurodyn

April 2024

Department of Mathematics and Information Science, Henan University of Economics and Law, Zhengzhou, 450046 China.

Multiple delays and connection topology are the key parameters for the realistic modeling of networks. This paper discusses the influences of time delays and connection weight on multi-delay artificial neural models with inertial couplings. Firstly, sufficient conditions of some singularities involving static bifurcation, Hopf bifurcation, and pitchfork-Hopf bifurcation are presented by analyzing the transcendental characteristic equation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!