Glycosylation in room temperature ionic liquid using unprotected and unactivated donors.

Carbohydr Res

Department of Chemical and Biological Engineering, Biotechnology 4005, Rensselaer Polytechnic Institute, 110, 8th Street, Troy, NY 12180, USA.

Published: February 2007

Glycosylation in room temperature ionic liquid is demonstrated using unprotected and unactivated donors. Modest yields of simple benzyl glycosides and disaccharides of glucose, mannose and N-acetylgalactosamine were obtained in 1-ethyl-3-methylimidazolium benzoate with Amberlite IR-120 (H(+)) resin or p-toluenesulfonic acid as promoters.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1905819PMC
http://dx.doi.org/10.1016/j.carres.2006.11.022DOI Listing

Publication Analysis

Top Keywords

glycosylation room
8
room temperature
8
temperature ionic
8
ionic liquid
8
unprotected unactivated
8
unactivated donors
8
liquid unprotected
4
donors glycosylation
4
liquid demonstrated
4
demonstrated unprotected
4

Similar Publications

A Sorghum / Homolog Functions in PAMP-Triggered Immunity and Cell Death in Response to Infection.

Phytopathology

January 2025

University of Florida, Microbiology & Cell Science, Cancer/Genetics Research Complex 302, 2033 Mowry Road, Gainesville, Florida, United States, 32610;

(L.) Moench is the fifth most important cereal crop and expected to gain prominence due to its versatility, low input requirements, and tolerance to hot and dry conditions. In warm and humid environments the productivity of sorghum is severely limited by the hemibiotrophic fungal pathogen , the causal agent of anthracnose.

View Article and Find Full Text PDF

Compartmentalized co-immobilization of cellulase and cellobiose phosphorylase within zeolitic imidazolate framework efficiently synthesizes 1-p-Glc: Glycosylation of FDG.

Int J Biol Macromol

December 2024

Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China. Electronic address:

Enzymatic glycosylation is an efficient and biocompatible approach to enhance natural product bioavailability. Cellobiose phosphorylase, a novel glycosyltransferase, utilizes 1-phospho-glucose (1-p-Glc) as a glycosyl donor for regioselective glycosylation of various natural substrates. However, the high cost of 1-p-Glc limits the economic feasibility of the process.

View Article and Find Full Text PDF

1-(2'-Hydroxy-2'-Methylpropionyl)Glycoside as a Versatile Glycosyl Donor for O-/C-Glycosylation.

Chemistry

November 2024

State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China.

Herein, we developed a Lewis acid-mediated O-glycosylation and C-glycosylation protocol using stable glycosyl 2'-hydroxy-2'-methylpropionates as donors. These glycosylation reactions reached completion within 1 h at room temperature. The practicality of this protocol is characterized by their straightforward operation and efficient applicability to various substrates, including both disarmed and armed glycosyl donors, through the remote activation of easily accessible TMSOTf.

View Article and Find Full Text PDF

Herein, we describe a stereoretentive palladium-catalyzed cross-coupling between the in situ-generated glycosyl thiolate anion and diverse (hetero)aryl iodides at room temperature for creating the library of (hetero)aryl thioglycosides. The key to success is the judicious pairing of bis-electrophilic-nucleophilic partners with a variety of thioesters in an atom-economical way in which both the glycosyl thiolate anion and the acylium cation are incorporated into the final analogue. The advantage of this method is the acyl transfer on various nucleophilic partners, including a hydroxyl, a primary or secondary amine, an amino acid, and the biologically active hSGLT1 inhibitor.

View Article and Find Full Text PDF

Synthesis of 2-Amino-2-deoxy Sugars via Boron-Catalyzed Coupling of Glycosyl Fluorides and Silyl Ether Acceptors.

Org Lett

September 2024

Department of Chemistry, University of Michigan, 930 N. University Ave., Ann Arbor, Michigan 48109-1055, United States.

Although aminosugars are important components in a variety of bioactive molecules, their stereoselective formation is made challenging by the Lewis basic nature of amino substituents. Additionally, the use of -acyl protecting groups is often problematic due to the competing formation of oxazolines during the glycosylation of 2-aminosugar derivatives. Herein, we report a boron-catalyzed strategy utilizing silyl ether glycosyl acceptors and 2-aminosugar donors that employs the 2,2,2-trichloroethoxycarbonyl (Troc) protecting group for the C2 amino functionality in glycosyl fluorides.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!