A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Phosphorescent platinum(II) complexes derived from multifunctional chromophores: synthesis, structures, photophysics, and electroluminescence. | LitMetric

Phosphorescent platinum(II) complexes derived from multifunctional chromophores: synthesis, structures, photophysics, and electroluminescence.

Inorg Chem

Department of Chemistry and Centre for Advanced Luminescence Materials, Hong Kong Baptist University, Waterloo Road, Kowloon Tong, Hong Kong, People's Republic of China.

Published: December 2006

The synthesis and structural, photophysical, electrochemical, and electroluminescent properties of a novel class of trifunctional Pt(II) cyclometalated complexes are reported in which the hole-transporting triarylamine, electron-transporting oxadiazole, and electroluminescent metal components are integrated into a single molecule. These neutral metal chelates display good thermal stability (>250 degrees C under N2) and morphological stability. All of them exhibit intense ligand-centered fluorescence and phosphorescence in fluid solutions at room temperature, but the emission spectra become largely dominated by triplet emission bands in CH2Cl2 glass at 77 K. Substituents with different electronic properties were introduced into the bipolar cyclometalating ligands to fine-tune the absorption and emissive characteristics of the compounds, and the results were correlated with theoretical calculations using density functional theory. A comparison of the photophysics and electrochemistry of our multifunctional systems to those only derived from each of the constituent components was also made and discussed. These Pt complexes can be vacuum-sublimed and applied as emissive dopants for the fabrication of vapor-deposited electrophosphorescent organic light-emitting devices (OLEDs), which generally exhibit good device performance with efficiencies up to 3.6%, 11.0 cd A-1, and 5.8 lm W-1. While the electroluminescence energy resembles that recorded in fluid solutions for these Pt emitters, these monochromatic OLEDs can emit tunable colors by varying the aryl ring substituents and the level of doping. Saliently, single dopant white-light electroluminescence, triggered by the simultaneous fluorescence/phosphorescence emission of the metal complexes and a variation of applied driving voltages, has also been realized based on some of these multifunctional complexes with peak electrophosphorescence efficiencies of 6.8 cd A-1 and 2.6%.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ic061566cDOI Listing

Publication Analysis

Top Keywords

fluid solutions
8
complexes
5
phosphorescent platinumii
4
platinumii complexes
4
complexes derived
4
derived multifunctional
4
multifunctional chromophores
4
chromophores synthesis
4
synthesis structures
4
structures photophysics
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!