Protein and low molecular mass thiols as targets and inhibitors of glycation reactions.

Chem Res Toxicol

The Heart Research Institute, 114 Pyrmont Bridge Road, Sydney, NSW 2050, Australia.

Published: December 2006

Protein glycation has been implicated in the aging process as well as the complications of diabetes (retinopathy, neuropathy, nephropathy, and atherosclerosis). The nitrogen substituents of Lys, Arg, and His residues and the N-terminus of proteins are known to be readily glycated. As the thiol group of Cys is a powerful nucleophile, we hypothesized that Cys residues should also be targets of glycation and that low molecular mass thiols may act as protective agents. In this study the role of thiol glycation, induced by dicarbonyls, in protein cross-link formation and damage prevention is examined. It is shown that incubation of creatine kinase with glyoxal results in protein cross-link formation, with this occurring concurrently with loss of thiol groups, enzyme inactivation, and formation of S-carboxymethylcysteine, a product of glyoxal adduction to Cys residues. Cross-links have also been detected between N-acetylcysteine and the Lys-rich protein histone H1, demonstrating the formation of thiol-glyoxal-amine cross-links. Mass spectrometry has been used to characterize some of these cross-links as 2-(alkylthio)acetamides. A range of low molecular mass thiols have been shown to inhibit dicarbonyl adduction to, and cross-linking of, the thiol-free protein lysozyme, consistent with these thiols being alternative (sacrificial) targets of glycation. Some of these thiols are more efficient modulators of glycation than established glycation inhibitors such as aminoguanidine. These data demonstrate that thiols are facile targets of glycation and that low molecular mass thiols are potent glycation inhibitors. These data may aid the design of therapeutic agents for the treatment of the complications of diabetes.

Download full-text PDF

Source
http://dx.doi.org/10.1021/tx0602158DOI Listing

Publication Analysis

Top Keywords

low molecular
16
molecular mass
16
mass thiols
16
targets glycation
12
glycation
9
complications diabetes
8
cys residues
8
glycation low
8
protein cross-link
8
cross-link formation
8

Similar Publications

Decoding the Molecular Enigma Behind Asbestos and Fibrous Nanomaterial-induced carcinogenesis.

J Occup Health

January 2025

Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan.

Objectives: Natural fibrous mineral, asbestos, has been useful in industry for many centuries. In the 1960's, epidemiology had recognized the association between asbestos exposure and mesothelioma and the IARC designated all kinds of asbestos as Group 1 in 1987. However, various scientific enigmas remained regarding the molecular mechanisms of asbestos-induced mesothelial carcinogenesis.

View Article and Find Full Text PDF

The Low Density Lipoprotein receptors (LDLRs) gene family includes 15 receptors: very low-density lipoprotein receptor (VLDLR), LDLR, Sorting-related receptor with A-type repeats (SORLA), and 12 LDL receptor-related proteins (LRPs): LRP1, LRP1B, LRP2, LRP3, LRP4, LRP5, LRP6, LRP8, LRP10, LRP11, LRP12, LRP13. Most of these are involved in the transduction of key signals during embryonic development and in the regulation of cholesterol homeostasis. In oviparous animals, the VLDL receptor is also known as VTGR since it facilitates the uptake of vitellogenin in ovary.

View Article and Find Full Text PDF

Understanding the molecular mechanisms that confer cold resistance in mammalian cells might be relevant for advancing medical applications. This study aimed to exploit the protective function of Late Embryogenesis Abundant (LEA) proteins, known to provide resistance to low temperatures in extremophiles and plants, by their exogenous expression in mammalian cells, and compare their effects with the well characterized antioxidant, vitamin E.Remarkably, the expression of LEA proteins in mammalian cells exerted cold-protective effect similar to Vitamin E.

View Article and Find Full Text PDF

Background: Anti-CD19 CAR T-cells have revolutionized outcomes in relapsed/refractory large B-cell lymphomas. Long-term follow-up underscored the role of hematological toxicity in non-relapse mortality, largely driven by infections, leading to the development of the CAR-HEMATOTOX (HT) score for predicting neutropenia. The European scientific community (EHA/EBMT) later reached a consensus, defining a new entity: immune effector cell-associated hematotoxicity (ICAHT).

View Article and Find Full Text PDF

The characteristics of aminotransferases gene family in Ruditapes philippinarum and its response to salinity stresses.

Comp Biochem Physiol C Toxicol Pharmacol

January 2025

College of Fisheries and Life Science, Dalian Ocean University, 116023 Dalian, China; Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian Ocean University, 116023 Dalian, China.

Aminotransferase is involved in the regulation of amino acid metabolism, which can affect the balance and distribution of amino acids in the organism, help maintain the homeostasis of amino acids in the organism, and play an important role in the environmental adaptation of aquatic animals. In this study, a total of 28 aminotransferase genes were identified in the genome of R. philippinarum.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!