Transcription of the embryonic myosin light chain gene is restricted to type II muscle fibers in human adult masseter.

Dev Biol

Institut Pasteur de Paris, Departement de Biologie Moléculaire, France.

Published: October 1991

We have previously demonstrated that the embryonic myosin light chain (MLC1emb) isoform whose expression is restricted to the early fetal stages in most mammalian skeletal muscles, persists throughout development in human masseter muscle. In order to go further in this study, we have compared the developmental profile of MLC1emb gene transcription in human masseter and quadriceps muscles using both Northern blotting and in situ hybridization techniques. Interestingly, whereas expression of this gene was observed in all fibers during fetal stages in both muscles, transcription in adult masseter was found to be restricted to type II fibers. Existence of a masseter-specific pathway of muscle gene regulation is discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0012-1606(91)90295-eDOI Listing

Publication Analysis

Top Keywords

embryonic myosin
8
myosin light
8
light chain
8
restricted type
8
adult masseter
8
fetal stages
8
human masseter
8
transcription embryonic
4
gene
4
chain gene
4

Similar Publications

Background: Duchenne muscular dystrophy (DMD) is a prevalent, fatal degenerative muscle disease with no effective treatments. Mdx mouse model of DMD exhibits impaired muscle performance, oxidative stress, and dysfunctional autophagy. Although antioxidant treatments may improve the mdx phenotype, the precise molecular mechanisms remain unclear.

View Article and Find Full Text PDF

Diacylglycerol kinase δ (DGKδ) phosphorylates diacylglycerol to produce phosphatidic acid. Previously, we demonstrated that down-regulation of DGKδ suppresses the myogenic differentiation of C2C12 myoblasts. However, the myogenic roles of DGKδ in vivo remain unclear.

View Article and Find Full Text PDF

Hsf1 is essential for proteotoxic stress response in smyd1b-deficient embryos and fish survival under heat shock.

FASEB J

January 2025

Department of Biochemistry and Molecular Biology, Institute of Marine and Environmental Technology, University of Maryland School of Medicine, Baltimore, Maryland, USA.

Article Synopsis
  • Molecular chaperones are essential for maintaining protein balance, and loss of Smyd1b in zebrafish leads to disorganized muscle fibers and increased heat shock protein expression.
  • RNA sequencing revealed that the upregulated heat shock proteins, particularly Hsp70s, are important for myosin folding and assembly in muscle cells.
  • Additionally, Hsf1 is crucial for activating heat shock gene expression during stress, with its absence exacerbating muscle issues in Smyd1b mutants and decreasing survival under heat stress.
View Article and Find Full Text PDF

Dilated cardiomyopathy (DCM) is a highly prevalent and genetically heterogeneous condition that results in decreased contractility and impaired cardiac function. The FK506-binding protein FKBP12 has been implicated in regulating the ryanodine receptor in skeletal muscle, but its role in cardiac muscle remains unclear. To define the effect of FKBP12 in cardiac function, we generated conditional mouse models of FKBP12 deficiency.

View Article and Find Full Text PDF

Prenatal glucocorticoid exposure and congenital abdominal wall defects: Involvement of CXCR4 - SDF-1 signaling.

Mech Ageing Dev

November 2024

Department of Anatomy and Molecular Embryology, Institute of Anatomy, Medical Faculty, Ruhr University Bochum, Bochum, Germany. Electronic address:

Developmental defects of the ventral abdominal wall, such as gastroschisis, have been associated with prenatal stress exposure. To investigate this further, dexamethasone (DEX), a synthetic glucocorticoid, was administered to fertilized chicken eggs on day 1 of incubation to simulate stress, and embryonic development was subsequently analyzed through in-situ hybridization, immunohistochemistry, and histological methods. Significant developmental abnormalities were displayed by DEX-treated embryos, including open abdomens, reduced MYOG expression in the abdominal wall, and disrupted muscle fiber formation, as indicated by altered Myosin heavy chain patterns.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!