To investigate the molecular mechanism of angiotensin II (Ang II) receptor activation in adult rat cardiac fibroblasts, the expressions of cell signal transduction-associated genes were studied by using cDNA microarray. Cardiac fibroblasts of adult Sprague-Dawley rats (230~250 g) were isolated and cultured. The cells were divided into 4 groups: Ang II, Ang II + losartan, Ang II + PD123319, Ang II + losartan + PD123319. The expressions of Ang II receptors were studied by immunohistochemical staining. Total RNA was extracted and purified. After cDNA synthesis and biotin-16-dUTP labeling, the probes were denatured and hybridized with GEArray Q Series mouse G Protein-coupled Receptors Signaling Pathway Finder Gene Array (MM-025) containing 96 genes associated with 11 pathways. The arrays were scanned with a Uniscand1000 scanner and further analyzed with GEArray Analyzer software. RT-PCR was used to further confirm the results of gene microarray. The results of immunohistochemical staining showed that the expression of Ang II type 2 (AT2) receptor was evidently induced by Ang II stimulation when Ang II type 1 (AT1) receptor was blocked. The results of gene array indicated that blocking AT1 receptor changed 34 genes (more than 2 folds), 30 were down-regulated and 4 were up-regulated. The maximum change was not beyond 20 folds. The following 9 pathways were activated: cAMP/PKA, Ca2+, PKC, PLC, MAPK, PI-3 kinase, NO-cGMP, Rho, NF-kappaB pathways. Blockade of AT2 receptor caused 64 genes changing more than 2 folds (48 were down-regulated and 16 were up-regulated). Eleven pathways were basically activated. The change of the following 7 genes was over 30 folds: Cyp19a1 (37 folds), Il1r2 (42 folds), Cflar (53 folds), Bcl21 (31 folds), Pik3cg (278 folds), Cdkn1a (90 folds), Agt (162 folds). According to the activated extent, the signal transduction pathways in turn were PI-3 kinase, NF-kappaB and JAK-STAT pathways. Blocking both AT1 and AT2 receptors changed 46 genes more than 2 folds (36 were down-regulated and 10 were up-regulated). Eleven pathways were basically activated. The results of RT-PCR of IL-1beta and TNF-alpha confirmed the observations in gene microarray. Our results show that Ang II can induce a high expression of AT2 receptor in adult rat cardiac fibroblasts when AT1 receptor is blocked, and the signal mechanism of AT2 receptor is clearly different from that of AT1 receptor.
Download full-text PDF |
Source |
---|
Eur J Heart Fail
January 2025
Royal Brompton and Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, UK.
Cardiogenic shock (CS) carries a 30-50% in-hospital mortality rate, with little improvement in outcomes in the last decade. Challenges in improving outcomes are closely linked to the frequent late presentation or diagnosis of CS where the 'point of no return' has often passed, leading to haemodynamic dysregulation, progressive myocardial depression, hypotension, and a downward spiral of hypoperfusion, organ dysfunction and decreasing myocardial function, driven by inflammation and metabolic derangements. Novel therapeutic interventions may have varying efficacy depending on the type and stage of shock in which they are applied.
View Article and Find Full Text PDFJ Fish Dis
January 2025
Fish Disease Research Unit, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Hannover, Germany.
Piscine orthoreovirus-1 and 3 (PRV-1, PRV-3) cause highly prevalent infection in cultured salmonids and can induce heart and skeletal muscle inflammation (HSMI) resulting in economic losses in aquaculture. However, to date, PRV-1 and PRV-3 have withstood replication in continuous cell lines. In this study, we used beating heart cell cultures obtained from different developmental stages of rainbow trout (Oncorhynchus mykiss) (RTC-L and RTC-A) and tested their ability to sustain replication of PRV-1 and PRV-3.
View Article and Find Full Text PDFTissue Eng Regen Med
January 2025
Department of Physiology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
Background: Direct reprogramming of fibroblasts into chemically induced cardiomyocyte-like cells (CiCMs) through small molecules presents a promising cell source for cardiac regeneration and therapeutic development. However, the contaminating non-cardiomyocytes, primarily unconverted fibroblasts, reduce the effectiveness of CiCMs in various applications. This study investigated a metabolic selection approach using lactate to enrich CiCMs by exploiting the unique metabolic capability of cardiomyocytes to utilize lactate as an alternative energy source.
View Article and Find Full Text PDFMol Biol Rep
January 2025
Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, 91766-1854, USA.
Cell communication and competition pathways are malleable to Myocardial Infarction (MI). Key signals, transcriptive regulators, and metabolites associated with apoptotic responses such as Myc, mTOR, and p53 are important players in the myocardium. The individual state of cardiomyocytes, fibroblasts, and macrophages in the heart tissue are adaptable in times of stress.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!