A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Effects of adenosine on functions of polymorphonuclear leukocytes from patients with septic shock. | LitMetric

Inasmuch as polymorphonuclear leukocytes (PMNs) play a major role in antibacterial defense but can also cause substantial tissue injury, drugs are needed which are able to attenuate tissue-toxic PMN reactions without inhibiting bactericidal mechanisms. Adenosine as a retaliatory metabolite is produced in response to metabolically unfavorable conditions like inflammation. However, it is not known whether adenosine can selectively downregulate adverse PMN reactions in sepsis. In this prospective clinical study, we characterized the effects of adenosine ex vivo on PMN functions in patients with septic shock ([SS] n = 33) and healthy volunteers ([HV] n = 33). The PMNs were primed by tumor necrosis factor-alpha (TNF-alpha) and subsequently stimulated with N-formyl methionyl-leucyl-phenylalanine (fMLP) to test for the formation of hydrogen peroxide (H2O2) in response to soluble inflammatory stimuli. The PMNs were also challenged by opsonized zymosan particles to assess adhesion, phagocytosis, and the associated H2O2 production. As compared with HV, PMNs from SS patients showed strongly enhanced tissue-toxic H2O2 production elicited by TNF-alpha/fMLP. Increasing concentrations of adenosine dose-dependently reduced this tissue-toxic H2O2 production in both groups with a half-maximal inhibitory concentration of 25 nmol/L and 114 nmol/L in HV and SS patients, respectively. This 4.6-fold decrease in the adenosine-mediated inhibition of PMNs from patients with septic shock was compensated by a 3-fold increase in the plasma concentrations of the nucleoside (HV, 42.5 +/- 2.9 nmol/L vs. SS, 125.6 +/- 18.2 nmol/L; mean +/- SEM). When the effects of adenosine were tested at a very high A2A receptor saturating concentration of 10 mol/L, neither adhesion, phagocytosis, nor the associated H2O2 production induced by opsonized zymosan was affected in both groups. These results were confirmed by the highly selective A2A agonist, CGS21680.Thus, adenosine or A2A agonists may be useful to selectively inhibit the potentially tissue-toxic H2O2 production elicited by soluble inflammatory mediators in patients with septic shock.

Download full-text PDF

Source
http://dx.doi.org/10.1097/01.shk.0000238066.00074.90DOI Listing

Publication Analysis

Top Keywords

h2o2 production
20
patients septic
16
septic shock
16
effects adenosine
12
tissue-toxic h2o2
12
polymorphonuclear leukocytes
8
pmn reactions
8
soluble inflammatory
8
opsonized zymosan
8
adhesion phagocytosis
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!