Sulindac sulfide and sulindac sulfone have demonstrated anti-neoplastic and chemo-preventive activity against various human tumors, but few studies have examined the relative effectiveness of these drugs against squamous cell carcinoma of the head and neck (SCCHN). These compounds are metabolites of the nonsteroidal anti-inflammatory drug sulindac and differ in their ability to inhibit cyclooxygenase-2 (COX-2) enzyme function. Sulindac sulfide (the sulindac metabolite with COX-2 inhibitory function) demonstrated strong cell growth inhibition as measured by MTT and growth assays in UM-SCC-1 and SCC-25 cells, while sulindac sulfone had only moderate effect. Growth inhibition by sulindac sulfide was associated with a significant increase in percent G cells and activation of caspase-3. Sulindac sulfide induced expression of p21wafl/cipl in a dose-dependent fashion, decreased cyclin D1 protein levels, and increased Rb hypophosphorylation. p21waf1/cip1 protein levels increased without a significant increase in wild-type p53, suggesting that sulindac sulfide induces a p53-independent pathway regulating p2lwafl/ciP1 protein levels in SCCHN. Sulindac sulfide also induced dose-dependent expression of PPAR-gamma. In contrast, sulindac sulfone did not significantly alter apoptosis, cell cycle distribution or G1 checkpoint protein expression at doses below 200 microM. These results demonstrate the differential activity of sulindac metabolites and support the hypothesis that sulindac sulfide induced perturbations in SCCHN cellular proliferation could be regulated both by p21waf1/cip1-dependent cytostatic and caspase-dependent cytotoxic pathways.

Download full-text PDF

Source
http://dx.doi.org/10.4161/cbt.6.1.3470DOI Listing

Publication Analysis

Top Keywords

sulindac sulfide
28
sulindac
14
sulindac sulfone
12
sulfide induced
12
protein levels
12
differential activity
8
activity sulindac
8
sulindac metabolites
8
squamous cell
8
cell carcinoma
8

Similar Publications

Celecoxib and sulindac sulfide elicit anticancer effects on PIK3CA-mutated head and neck cancer cells through endoplasmic reticulum stress, reactive oxygen species, and mitochondrial dysfunction.

Biochem Pharmacol

June 2024

Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Gyeonggi, Republic of Korea; Institute of Medical Science, Ajou University School of Medicine, Suwon, Gyeonggi, Republic of Korea. Electronic address:

Gain-of-function mutation in the phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) catalytic subunit alpha gene (PIK3CA) is a significant factor in head and neck cancer (HNC). Patients with HNC harboring PIK3CA mutations receive therapeutic benefits from the use of non-steroidal anti-inflammatory drugs (NSAIDs). However, the molecular mechanisms underlying these effects remain unknown.

View Article and Find Full Text PDF

Introduction: Triple-negative breast cancer (TNBC) comprises a heterogeneous group of clinically aggressive tumors with high risk of recurrence and metastasis. Current pharmacological treatment options remain largely limited to chemotherapy. Despite promising results, the efficacy of immunotherapy and chemo-immunotherapy in TNBC remains limited.

View Article and Find Full Text PDF

Effects of acidic non-steroidal anti-inflammatory drugs on human cytochrome P450 4A11 activity: Roles of carboxylic acid and a sulfur atom in potent inhibition by sulindac sulfide.

Chem Biol Interact

September 2023

Department of Pharmacy, Shinshu University Hospital, 3-1-1 Asahi, Matsumoto, 390-8621, Japan; Department of Biochemical Pharmacology and Toxicology, Graduate School of Medicine, Shinshu University, 3-1-1 Asahi, Matsumoto, 390-8621, Japan. Electronic address:

Cytochrome P450 4A11 (CYP4A11) has many endogenous and exogenous compounds containing a carboxyl group in their structure as substrates. If drugs with this characteristic potently attenuate the catalytic function of CYP4A11, drug-drug interactions may occur. Acidic non-steroidal anti-inflammatory drugs (NSAIDs) possess a carboxylic acid in their structure.

View Article and Find Full Text PDF

Thrombospondin 1 (TSP1) is known for its cell-specific functions in cancer progression, such as proliferation and migration. It contains 22 exons that may potentially produce several different transcripts. Here, we identified TSP1V as a novel TSP1-splicing variant produced by intron retention (IR) in human thyroid cancer cells and tissues.

View Article and Find Full Text PDF

An anticoagulant/procoagulant self-converting and bleeding site-targeting systemic nanotherapy for rapidly controlling noncompressible bleeding without risk of thrombosis.

J Thromb Haemost

June 2023

Department of Pharmacy, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China; School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China; Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing, China. Electronic address:

Background: Hemorrhage, in particular noncompressible hemorrhage, is the leading cause of casualties in combat trauma and civilian trauma. Although systemic agents can stop bleeding at both inaccessible and accessible injury sites, the application of systemic hemostats in clinics is strictly limited by the nontargeting ability of hemostats and their subsequent potential for thromboembolic complications.

Objectives: To engineer an anticoagulant/procoagulant self-converting and bleeding site-targeting systemic nanohemostat to rapidly control noncompressible bleeding without thrombosis risk.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!