Among the goals of gene therapy is long-term expression of delivered transgenes. Recombinant Tagdeleted SV40 vectors (rSV40s) are especially well suited for this purpose. rSV40s deliver transgene expression that endures for extended periods of time in tissue culture and in vivo, in both dividing and nondividing cells. These vectors are particularly effective in transducing some cell types that have been almost unapproachable using other gene delivery systems, such as quiescent hematopoietic progenitor cells and their differentiated derivatives. Other cellular targets include neurons, brain microglia, hepatocytes, dendritic cells, vascular endothelium, and others. Because rSV40s do not elicit neutralizing antibodies they are useful for in vivo gene delivery in settings where more than one administration may be desirable. The key characteristics of these vectors include their high production titers and therefore suitability for large cell pools, effectiveness in delivering intracellular proteins, and untranslated RNAs, maintenance of transgene expression at constant levels for extended times, suitability for constitutive or conditional promoters and for combinatorial gene delivery and ability to integrate into genomes of both dividing and nondividing cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1385/MB:34:2:257 | DOI Listing |
Arch Microbiol
January 2025
SLIIT, Malabe, Sri Lanka.
Biochem Biophys Res Commun
January 2025
Graduate School of Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, 422-8021, Japan; Course of Biological Science, Department of Science, Graduate School of Integrated Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, 422-8021, Japan. Electronic address:
Intranuclear protein quality control (PQC) is critical for protein homeostasis (or proteostasis) in non-dividing cells including brain nerve cells, but its molecular mechanism remains unresolved. In nutrient-starved conditions, elimination of nucleolar proteins is critical for cell viability in budding yeast, providing a model system to study the mechanisms involved in intranuclear PQC. The nuclear-specific endosomal sorting complex required for transport (ESCRT) CHMP7/Chm7 is linked to neurodegenerative diseases, but its known role is limited.
View Article and Find Full Text PDFElife
December 2024
Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland.
Parkinson's disease (PD) is a multifactorial disease caused by irreversible progressive loss of dopaminergic neurons (DANs). Recent studies have reported the successful conversion of astrocytes into DANs by repressing polypyrimidine tract binding protein 1 (PTBP1), which led to the rescue of motor symptoms in a chemically-induced mouse model of PD. However, follow-up studies have questioned the validity of this astrocyte-to-DAN conversion model.
View Article and Find Full Text PDFBiomol Ther (Seoul)
January 2025
Department of Pharmacology, College of Dentistry and Research Institute of Oral Science, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea.
In cancer cells, survival genes contribute to uncontrolled growth and the survival of malignant cells, leading to tumor progression. Neurons are post-mitotic cells, fully differentiated and non-dividing after neurogenesis and survival genes are essential for cellular longevity and proper functioning of the nervous system. This review explores recent research findings regarding the role of survival genes, particularly DX2, in degenerative neuronal tissue cells and cancer cells.
View Article and Find Full Text PDFStem Cell Res Ther
December 2024
Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada.
Background: Pluripotent cell-derived islet replacement therapy offers promise for treating Type 1 diabetes (T1D), but concerns about uncontrolled cell proliferation and tumorigenicity present significant safety challenges. To address the safety concern, this study aims to establish a proof-of-concept for a glucose-responsive, insulin-secreting cell line integrated with a built-in FailSafe kill-switch.
Method: We generated β cell-induced progenitor-like cells (βiPLCs) from primary mouse pancreatic β cells through interrupted reprogramming.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!