Actinobacillus actinomycetemcomitans, a pathogen associated with oral and extra-oral infections, requires iron to grow under limiting conditions. Although incapable of producing siderophores, this pathogen could acquire iron by direct interaction with compounds such as haemin, haemoglobin, lactoferrin and transferrin. In this work the ability of different A. actinomycetemcomitans strains to bind and use different iron sources was tested. None of the strains tested used haemoglobin, lactoferrin or transferrin as sole sources of iron. However, all of them used FeCl(3) and haemin as iron sources under chelated conditions. Dot-blot binding assays showed that all strains bind lactoferrin, haemoglobin and haemin, but not transferrin. Insertion inactivation of hmsF, which encodes a predicted cell-envelope protein related to haemin-storage proteins produced by other pathogens, reduced haemin and Congo red binding drastically without affecting haemin utilization as an iron source under chelated conditions. Biofilm assays showed that all strains tested attached to and formed biofilms on plastic under iron-rich and iron-chelated conditions. However, scanning electron microscopy showed that smooth strains formed simpler biofilms than rough isolates. Furthermore, the incubation of rough cells in the presence of FeCl(3) or haemin resulted in the formation of more aggregates and microcolonies compared with the fewer cell aggregates formed when cells were grown in the presence of the synthetic iron chelator dipyridyl. These cell responses to changes in extracellular iron concentrations may reflect those that this pathogen expresses under the conditions it encounters in the human oral cavity.

Download full-text PDF

Source
http://dx.doi.org/10.1099/jmm.0.46844-0DOI Listing

Publication Analysis

Top Keywords

iron sources
12
actinobacillus actinomycetemcomitans
8
iron
8
haemoglobin lactoferrin
8
lactoferrin transferrin
8
strains bind
8
strains tested
8
fecl3 haemin
8
chelated conditions
8
assays strains
8

Similar Publications

Curcumin-coated iron oxide nanoparticles for photodynamic therapy of breast cancer.

Photochem Photobiol Sci

January 2025

Nanosensors Laboratory, Research & Development Institute, University of Vale do Paraíba, Av. Shishima Hifumi, 2911, Urbanova, São José dos Campos, São Paulo, Brazil.

Breast cancer is the deadliest cancer among women and its treatment using traditional methods leads the patient to experience adverse effects. However, photodynamic therapy (PDT) is a non-invasive therapy modality that works through a photosensitizing agent, which treating activated by a suitable light source, releases reactive oxygen species capable of treating cancer. Furthermore, recent research indicates that combining PDT and nanoparticles can enhance therapeutic effects.

View Article and Find Full Text PDF

Arctic ecosystems are affected by accelerated warming as well as the intensification of the hydrologic cycle, yet understanding of the impacts of compound climate extremes (e.g., simultaneous extreme heat and rainfall) remains limited, despite their high potential to alter ecosystems.

View Article and Find Full Text PDF

Fish is a significant source of animal protein for humans; however, it has a tendency to bioaccumulate toxicants from the environment. The present study assessed the health risks associated with potential toxic metals (PTMs) in differently processed catfish (Clarias gariepinus) from four markets in Abeokuta metropolis, southwestern Nigeria. A total of 60 samples were collected and analyzed for PTMs using an Atomic Absorption Spectrophotometer.

View Article and Find Full Text PDF

We investigate magnesium-iron pyroborate MgFeBO as a potential cathode material for rechargeable magnesium-ion batteries. Synchrotron powder X-ray diffraction and Mössbauer spectroscopy confirm its successful synthesis and iron stabilization in the high-spin Fe(II) state. Initial electrochemical testing against a lithium metal anode yields a first charge capacity near the theoretical value (147.

View Article and Find Full Text PDF

Objective: Amaranth, a nutritious iron source, is known for treating anemia in young children and lactating mothers, but its effectiveness in reducing hemoglobin concentration needs further investigation. Therefore, this study aimed to summarize the effectiveness of amaranth-based food interventions in improving hemoglobin concentration.

Method: A randomized controlled trial and quasi-experimental study conducted since 2000 were searched in databases like PubMed, Scopus, Embase, Cochrane, AJOL, and Web of Science using prespecified keywords.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!