Multiple phosphorylation of beta-catenin by glycogen synthase kinase 3 (GSK3) in the Wnt pathway is primed by CK1 through phosphorylation of Ser-45, which lacks a typical CK1 canonical sequence. Synthetic peptides encompassing amino acids 38-64 of beta-catenin are phosphorylated by CK1 on Ser-45 with low affinity (K(m) approximately 1 mM), whereas intact beta-catenin is phosphorylated at Ser-45 with very high affinity (K(m) approximately 200 nM). Peptides extended to include a putative CK1 docking motif (FXXXF) at 70-74 positions or a F74AA mutation in full-length beta-catenin had no significant effect on CK1 phosphorylation efficiency. beta-Catenin C-terminal deletion mutants up to residue 181 maintained their high affinity, whereas removal of the 131-181 fragment, corresponding to the first armadillo repeat, was deleterious, resulting in a 50-fold increase in K(m) value. Implication of the first armadillo repeat in beta-catenin targeting by CK1 is supported in that the Y142E mutation, which mimics phosphorylation of Tyr-142 by tyrosine kinases and promotes dissociation of beta-catenin from alpha-catenin, further improves CK1 phosphorylation efficiency, lowering the K(m) value to <50 nM, approximating the physiological concentration of beta-catenin. In contrast, alpha-catenin, which interacts with the N-terminal region of beta-catenin, prevents Ser-45 phosphorylation of CK1 in a dose-dependent manner. Our data show that the integrity of the N-terminal region and the first armadillo repeat are necessary and sufficient for high-affinity phosphorylation by CK1 of Ser-45. They also suggest that beta-catenin association with alpha-catenin and beta-catenin phosphorylation by CK1 at Ser-45 are mutually exclusive.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1750875 | PMC |
http://dx.doi.org/10.1073/pnas.0609424104 | DOI Listing |
Sci Adv
January 2025
Simpson Querrey Institute for Epigenetics, Department of Biochemistry and Molecular Genetics Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
The stability of RNA polymerase II (Pol II) is tightly regulated during transcriptional elongation for proper control of gene expression. Our recent studies revealed that promoter-proximal Pol II is destabilized via the ubiquitin E3 ligase cullin 3 (CUL3) upon loss of transcription elongation factor SPT5. Here, we investigate how CUL3 recognizes chromatin-bound Pol II as a substrate.
View Article and Find Full Text PDFBMC Cancer
January 2025
Department of Hepatobiliary Surgery, Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China.
Background: Pancreatic adenocarcinoma (PAAD) has a very poor prognosis, and there are few treatments for PAAD. Therefore, it is important to find some biomarkers for the diagnosis and treatment of PAAD. Although some members of Armadillo repeat containing proteins (ARMCs) have been implicated in the development of certain cancers, their relationship with PAAD remains unknown.
View Article and Find Full Text PDFNat Commun
November 2024
Division of Neurosciences and Cellular Structure, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
ARL5 is a member of the ARF family of small GTPases that is recruited to the trans-Golgi network (TGN) by another ARF-family member, ARFRP1, in complex with the transmembrane protein SYS1. ARL5 recruits its effector, the multisubunit tethering complex GARP, to promote SNARE-dependent fusion of endosome-derived retrograde transport carriers with the TGN. To further investigate the function of ARL5, we sought to identify additional effectors.
View Article and Find Full Text PDFJ Med Chem
November 2024
Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185 Rome, Italy.
The potential as a cancer therapeutic target of the recently reported hotspot binding region close to Lys508 of the β-catenin armadillo repeat domain was not exhaustively explored. In order to get more insight, we synthesized novel -(heterocyclylphenyl)benzenesulfonamides -. The new compounds significantly inhibited Wnt-dependent transcription as well as SW480 and HCT116 cancer cell proliferation.
View Article and Find Full Text PDFProtein Sci
November 2024
Department of Biomedical Sciences, University of Padova, Padova, Italy.
Alpha-solenoids are a significant and diverse subset of structured tandem repeat proteins (STRPs) that are important in various domains of life. This review examines their structural and functional diversity and highlights their role in critical cellular processes such as signaling, apoptosis, and transcriptional regulation. Alpha-solenoids can be classified into three geometric folds: low curvature, high curvature, and corkscrew, as well as eight subfolds: ankyrin repeats; Huntingtin, elongation factor 3, protein phosphatase 2A, and target of rapamycin; armadillo repeats; tetratricopeptide repeats; pentatricopeptide repeats; Pumilio repeats; transcription activator-like; and Sel-1 and Sel-1-like repeats.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!