Strains within the genus Salinospora have been shown to produce complex natural products having antibiotic and antiproliferative activities. The biochemical basis for the cytotoxic effects of salinosporamide A has been linked to its ability to inhibit the proteasome. Synthetically accessible salinosporamide A (ML858) was used to determine its biochemical and biological activities and to compare its effects with those of bortezomib. ML858 and bortezomib show time- and concentration-dependent inhibition of the proteasome in vitro. However, unlike bortezomib, which is a reversible inhibitor, ML858 covalently binds to the proteasome, resulting in the irreversible inhibition of 20S proteasome activity. ML858 was equipotent to bortezomib in cell-based reporter stabilization assays, but due to intramolecular instability is less potent in long-term assays. ML858 failed to maintain levels of proteasome inhibition necessary to achieve efficacy in tumor models responsive to bortezomib. Our results show that ML858 and bortezomib exhibit different kinetic and pharmacologic profiles and suggest that additional characterization of ML858 is warranted before its therapeutic potential can be fully appreciated.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1158/1535-7163.MCT-06-0185 | DOI Listing |
Reprod Sci
January 2025
Department of Biology, Faculty of Science, University of Qom, Qom, 3716146611, Iran.
Fluoxetine is used in the management of depression, anxiety and other mood disorders by increasing serotonin levels in the brain and can cause sexual side effects by changing the homeostasis of sex hormones and increasing oxidative stress. Since many men who take fluoxetine are of reproductive age and sperm are exposed to fluoxetine for a considerable time, this study aimed to examine the in vitro effects of fluoxetine on human sperm biochemical markers and sperm parameters. Semen samples from 30 fertile men were divided into three groups: a positive control group, a negative control group and a fluoxetine-treated group.
View Article and Find Full Text PDFSci Rep
January 2025
Biochemistry Department, Faculty of Agriculture, Al Azhar University, Cairo, Egypt.
Glutaraldehyde (GLU) is mainly used in medicine by healthcare workers during infection control as a chemical disinfectant. It has been linked to numerous health hazards that range from asthma to irritation of the eye to contact dermatitis. Citrullus colocynthis (C.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Science and Technology for Sustainable Development and One Health, Unit of Food Science and Nutrition, Università Campus Bio-Medico di Roma, Rome, 00128, Italy.
Defined by the World Health Organization (WHO) as indigenous knowledge and practices used for maintaining health and treating illnesses, traditional medicine (TM) represents a rich reservoir of ancient healing practices rooted in cultural traditions and accumulated wisdom over centuries. Five indigenous Kenyan plant species traditionally used in African TM, named Afzelia quanzensis, Azadirachta indica, Gigasiphon macrosiphon, Grewia bicolor, and Lannea schweinfurthii, represent a valuable resource in healing practices, yet their chemical composition and bioactivity remain understudied. To depict a primary bio-chemical characterization of these plants, their antioxidant and antimicrobial features have been evaluated by the use of methods validated in this context.
View Article and Find Full Text PDFNat Commun
January 2025
Chair for Bioinformatics, Institute for Computer Science, Friedrich Schiller University Jena, Jena, Germany.
Small molecule machine learning aims to predict chemical, biochemical, or biological properties from molecular structures, with applications such as toxicity prediction, ligand binding, and pharmacokinetics. A recent trend is developing end-to-end models that avoid explicit domain knowledge. These models assume no coverage bias in training and evaluation data, meaning the data are representative of the true distribution.
View Article and Find Full Text PDFJ Phys Chem B
January 2025
Department of Chemistry, Indian Institute of Technology (IIT) Indore, Indore, Madhya Pradesh 453552, India.
Artificially synthesized DNA holds significant promise in addressing fundamental biochemical questions and driving advancements in biotechnology, genetics, and DNA digital data storage. Rapid and precise electric identification of these artificial DNA strands is crucial for their effective application. Herein, we present a comprehensive investigation into the electric recognition of eight artificial synthesized DNA (DNA and DNA) nucleobases using quantum tunneling transport and machine learning (ML) techniques.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!