Glutamatergic synaptic depression by synthetic amyloid beta-peptide in the medial septum.

J Neurosci Res

Departamento de Fisiología y Farmacología, Facultad de Medicina, Instituto de Neurociencias de Castilla y León, Universidad de Salamanca, Salamanca, Spain.

Published: February 2007

The medial septum/diagonal band region, which participates in learning and memory processes via its cholinergic and GABAergic projection to the hippocampus, is one of the structures affected by beta amyloid (betaA) deposition in Alzheimer's disease (AD). The acute effects of betaA (25-35 and 1-40) on action potential generation and glutamatergic synaptic transmission in slices of the medial septal area of the rat brain were studied using current and patch-clamp techniques. The betaA mechanism of action through M1 muscarinic receptors and voltage-dependent calcium channels was also addressed. Excitatory evoked responses decreased (30-60%) in amplitude after betaA (2 microM) perfusion in 70% of recorded cells. However, the firing properties were unaltered at the same concentration. This depression was irreversible in most cases, and was not prevented or reversed by nicotine (5 microM). In addition, the results obtained using a paired-pulse protocol support pre- and postsynaptic actions of the peptide. The betaA effect was blocked by calcicludine (50 nM), a selective antagonist of L-type calcium channels, and also by blocking muscarinic receptors with atropine (5 muM) or pirenzepine (1 microM), a more specific M1-receptor blocker. We show that in the medial septal area this oligomeric peptide acts through calcium channels and muscarinic receptors. As blocking any of these pathways blocks the betaA effects, we propose a joint action through both mechanisms. These results may contribute to a better understanding of the pathophysiology at the onset of AD. This understanding will be required for the development of new therapeutic agents.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jnr.21150DOI Listing

Publication Analysis

Top Keywords

muscarinic receptors
12
calcium channels
12
glutamatergic synaptic
8
medial septal
8
septal area
8
betaa
6
synaptic depression
4
depression synthetic
4
synthetic amyloid
4
amyloid beta-peptide
4

Similar Publications

Introduction: Muscarinic 1 acetylcholine receptor (M1AChR) is a member of the Gprotein- coupled receptor superfamily, with the dysfunction being linked to the onset of Alzheimer's Disease (AD).

Aims: Retromer complex with Vacuolar Protein Sorting-35 (VPS35) as the core plays an important role in the transport of biological proteins and has been confirmed to be closely related to the pathogenesis of AD. This study was designed to determine whether VPS35 could affect the trafficking mechanism of M1AChRs.

View Article and Find Full Text PDF

The secreted human protein SLURP-2 is a regulator of epithelial homeostasis, which enhances the viability and migration of keratinocytes. The targets of SLURP-2 in keratinocytes are nicotinic and muscarinic acetylcholine receptors. This work is devoted to the search for the SLURP-2 functional regions responsible for enhancing keratinocyte viability and migration.

View Article and Find Full Text PDF

The increasing global elderly population, projected to reach 20% of individuals aged 65 and over by 2030, faces significant pulmonary challenges, including chronic obstructive pulmonary disease (COPD). Aging is associated with a natural decline in lung function and structural changes that exacerbate respiratory issues. COPD, characterized by chronic respiratory symptoms and airflow obstruction, presents a unique challenge in older patients due to the accelerated decline in lung function.

View Article and Find Full Text PDF

Aim: The present investigation aimed to explore in rats the early postnatal dysfunction of the brain muscarinic cholinergic system (EPDMChS) during the most vulnerable period of postnatal development, as the possible main factor for changes in adult hippocampal neurogenesis and disorders in hippocampus-dependent spatial learning and memory.

Methods: White inbred rats (n=15 in each group) were used. EPDMCHS was produced by a new method, which includes early postnatal blocking of M1-M5 muscarinic acetylcholine receptors in the rat pups, using subcutaneous injection of Scopolamine during postnatal days 7-28.

View Article and Find Full Text PDF

Background: Muscarinic receptor agonism and positive allosteric modulation is a promising mechanism of action for treating psychosis, not present in most D2R-blocking antipsychotics. Xanomeline, an M1/M4-preferring agonist, has shown efficacy in late-stage clinical trials, with more compounds being investigated. Therefore, we aim to synthesize evidence on the preclinical efficacy of muscarinic receptor agonists and positive allosteric modulators in animal models of psychosis to provide unique insights and evidence-based information to guide drug development.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!