Although benzene, a well-known human carcinogen, has been shown to induce apoptosis in vitro, no studies have been carried out to confirm and characterize its role in activating apoptosis in vivo. The present study investigated the effects of benzene inhalation on the epithelial cells lining the respiratory tract including bronchioles, terminal bronchioles, respiratory bronchioles and alveoli of male Sprague-Dawley rats. Inhalation of benzene 300 ppm for 7 days induced apoptotic changes in the parenchymal components in the lung that significantly exceeded the events of programmed cell death in normal control tissues. Apoptosis was confirmed by the electrophoretic analysis of internucleosomal DNA fragmentation of benzene-exposed lung tissues, which exhibited 180-200 bp laddering subunits indicative of genomic DNA degradation. Furthermore, semi-quantitative analysis of intracellular localization of terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling TUNEL) showed a significant (p < 0.001) increase in the apoptotic index calculated for bronchiolar 73.5%, terminal bronchiolar (65%), and respiratory bronchiolar 60.8% segmental epithelial components as well as alveolar (55%) epithelia. Analysis of immunohistochemical expression of apoptosis-related gene products also supported the hypothesis that benzene can induce apoptosis in chemosensitive target cells in the lung parenchyma. Quantitative immunhistochemistry showed a statistically significant increase p < 0.001 in the immunoreactive staining index for cytochrome c, Apaf-1 (apoptosis activating factor-1), DNA fragmentation factor, and representative cysteine proteases including caspase-1, caspase-2L, caspase-8 and caspase-9. Thus this is the first study of the respiratory system that demonstrates that benzene inhalation induces lung cell apoptosis as confirmed by DNA electrophoresis, in situ nick end labeling, and the upregulation of apoptosis-related gene products that facilitate caspase-cleaved enzymes which lead to cell degradation via programmed cell death. These responses may represent an important defense mechanism within the parenchymal cells of the respiratory system that reduce mutational hazard and the potential carcinogenic effects of benzene-initiated pathogenesis.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10565-006-0165-2DOI Listing

Publication Analysis

Top Keywords

nick labeling
12
apoptosis-related gene
12
gene products
12
effects benzene
8
localization terminal
8
terminal deoxynucleotidyl
8
deoxynucleotidyl transferase-mediated
8
transferase-mediated dutp-biotin
8
dutp-biotin nick
8
labeling tunel
8

Similar Publications

Esmolol has been demonstrated to mitigate inflammation damage and T lymphocyte apoptosis in septic cardiomyopathy. It has been established that the activation of α7 nicotinic acetylcholine receptor (nAChR) by cluster of differentiation 4(CD4) T lymphocytes expressing choline acetyltransferase (ChAT) can prevent excessive inflammation and reduce splenocyte apoptosis in septic cardiomyopathy. Given the similar anti-inflammatory effects, we hypothesized that esmolol might be associated with α7 nAChR and thereby exert its cardioprotective functions.

View Article and Find Full Text PDF

Background: () is associated with a variety of malignancies. However, the role of in osteosarcoma and its underlying mechanism are not yet fully understood. This study aimed to explore the role and the mechanism of in osteosarcoma.

View Article and Find Full Text PDF

Intestinal injury is an important complication of burn sepsis with limited therapeutic choices. Phellodendrine is a promising compound for gastrointestinal inflammatory diseases and is extracted from the traditional Chinese medicine phellodendron bark. The study aimed to explore the role of phellodendrine against oxidative stress and autophagy in burn sepsis-induced intestinal injury.

View Article and Find Full Text PDF

Endometriosis is a chronic inflammatory disorder characterized by presence of endometrial tissue outside the uterine cavity. Immunohistochemical analysis (IHC) revealed markedly elevated expression of IL6ST in endometrial tissue of patients with ovarian endometriosis. Level of methylation of IL6ST is diminished in patients with endometriosis, whereas level of mRNA expression is markedly elevated by RT-PCR.

View Article and Find Full Text PDF

Arsenic trioxide preconditioning attenuates hepatic ischemia- reperfusion injury in mice: Role of ERK/AKT and autophagy.

Chin Med J (Engl)

January 2025

Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China.

Background: Arsenic trioxide (ATO) is indicated as a broad-spectrum medicine for a variety of diseases, including cancer and cardiac disease. While the role of ATO in hepatic ischemia/reperfusion injury (HIRI) has not been reported. Thus, the purpose of this study was to identify the effects of ATO on HIRI.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!