Deep-etching electron microscopy of cells of Magnetospirillum magnetotacticum: evidence for filamentous structures connecting the magnetosome chain to the cell surface.

Curr Microbiol

Departamento de Microbiologia Geral, Instituto de Microbiologia Professor Paulo de Góes, CCS, Bloco I, Universidade Federal do Rio de Janeiro, 21941-590, Rio de Janeiro, RJ, Brasil.

Published: January 2007

Magnetospirillum magnetotacticum are magnetotactic bacteria that form a single chain of magnetite magnetosomes within its cytoplasm. Here, we studied the ultrastructure of M. magnetotacticum by freeze-fracture and deep-etching to understand the spatial correlation between the magnetosome chain and the cell envelope and its possible implications for magnetotaxis. Magnetosomes were found mainly near the cell envelope, forming chains that were closely associated with the granular cytoplasmic material. The membrane surrounding the magnetosomes could be visualized in deep-etching preparations. Thin connections between magnetosome chains and the cell envelope were observed in deep-etching images. These results strengthen the hypothesis for the existence of structures that transfer the torque from the magnetosome chains to the whole cell during the orientation of magnetotactic bacteria to a magnetic field lines.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00284-005-0221-9DOI Listing

Publication Analysis

Top Keywords

cell envelope
12
magnetospirillum magnetotacticum
8
magnetosome chain
8
chain cell
8
magnetotactic bacteria
8
magnetosome chains
8
chains cell
8
cell
5
deep-etching
4
deep-etching electron
4

Similar Publications

Oogenesis involves a novel nuclear envelop remodeling mechanism in Schmidtea mediterranea.

Dev Biol

December 2024

Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA; Howard Hughes Medical Institute, Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA. Electronic address:

The cell nuclei of Ophisthokonts, the eukaryotic supergroup defined by fungi and metazoans, is remarkable in the constancy of their double-membraned structure in both somatic and germ cells. Such remarkable structural conservation underscores common and ancient evolutionary origins. Yet, the dynamics of disassembly and reassembly displayed by Ophisthokont nuclei vary extensively.

View Article and Find Full Text PDF

Designing of new trans-stilbene derivative: An entry barrier of Zika virus in host cell.

J Mol Graph Model

December 2024

Post Graduate Department of Chemistry, Mehr Chand Mahajan DAV College for Women, Chandigarh, 160036, India.

A large population in the world lives in tropical and subtropical regions, showing a high risk of Zika viral infection which leads to a situation of global health emergency and demands extensive research to create effective antiviral medicines. Herein, we introduce the design of a new derivatized trans-stilbene molecule to investigate the inhibition of Zika virus entry into the host cell by molecular docking approach. The synthesized compound has been characterized by different analytical techniques such as FTIR, H NMR,C NMR and UV-visible spectroscopy as well as Mass spectrometry (MS).

View Article and Find Full Text PDF

In recent decades, drug resistant (DR) strains of Mycobacterium tuberculosis (M.tb), the cause of tuberculosis (TB), have emerged that threaten public health. Although M.

View Article and Find Full Text PDF

Targeting nuclear mechanics is emerging as a promising therapeutic strategy for sensitizing cancer cells to immunotherapy. Inhibition of the mechano-sensory kinase ATR leads to mechanical vulnerability of cancer cells, causing nuclear envelope softness and collapse and activation of the cGAS-STING-mediated innate immune response. Finding novel compounds that interfere with the non-canonical role of ATR in controlling nuclear mechanics presents an intriguing therapeutic opportunity.

View Article and Find Full Text PDF

Two Disaccharide-Bearing Polyethers, K-41B and K-41Bm, Potently Inhibit HIV-1 via Mechanisms Different from That of Their Precursor Polyether, K-41A.

Curr Issues Mol Biol

November 2024

Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning 530021, China.

The screening of novel antiviral agents from marine microorganisms is an important strategy for new drug development. Our previous study found that polyether K-41A and its analog K-41Am, derived from a marine Streptomyces strain, exhibit anti-HIV activity by suppressing the activities of HIV-1 reverse transcriptase (RT) and its integrase (IN). Among the K-41A derivatives, two disaccharide-bearing polyethers-K-41B and K-41Bm-were found to have potent anti-HIV-1 activity in vitro.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!