Antibody class switching mediated by yeast endonuclease-generated DNA breaks.

Science

Howard Hughes Medical Institute, Children's Hospital, CBR Institute for Biomedical Research, and Department of Genetics, Harvard University Medical School, Boston, MA 02115, USA.

Published: January 2007

Antibody class switching in activated B cells uses class switch recombination (CSR), which joins activation-induced cytidine deaminase (AID)-dependent double-strand breaks (DSBs) within two large immunoglobulin heavy chain (IgH) locus switch (S) regions that lie up to 200 kilobases apart. To test postulated roles of S regions and AID in CSR, we generated mutant B cells in which donor Smu and accepter Sgamma1 regions were replaced with yeast I-SceI endonuclease sites. We found that site-specific I-SceI DSBs mediate recombinational IgH locus class switching from IgM to IgG1 without S regions or AID. We propose that CSR evolved to exploit a general DNA repair process that promotes joining of widely separated DSBs within a chromosome.

Download full-text PDF

Source
http://dx.doi.org/10.1126/science.1136386DOI Listing

Publication Analysis

Top Keywords

class switching
12
antibody class
8
igh locus
8
regions aid
8
switching mediated
4
mediated yeast
4
yeast endonuclease-generated
4
endonuclease-generated dna
4
dna breaks
4
breaks antibody
4

Similar Publications

Analysis of a class of two-delay fractional differential equation.

Chaos

January 2025

School of Mathematics and Statistics, University of Hyderabad, Hyderabad 500046, India.

The differential equations involving two discrete delays are helpful in modeling two different processes in one model. We provide the stability and bifurcation analysis in the fractional order delay differential equation Dαx(t)=ax(t)+bx(t-τ)-bx(t-2τ) in the ab-plane. Various regions of stability include stable, unstable, single stable region (SSR), and stability switch (SS).

View Article and Find Full Text PDF

Where Does the Proton Go? Structure and Dynamics of Hydrogen-Bond Switching in Aminophosphine Chalcogenides.

Angew Chem Int Ed Engl

January 2025

University of Regensburg, Faculty of Chemistry and Pharmacy, Institute of Inorganic Chemistry, Universitätsstraße 31, D-93053, Regensburg, GERMANY.

Aminophosphates are the focus of research on prebiotic phosphorylation chemistry. Their bifunctional nature also makes them a powerful class of organocatalysts. However, the structural chemistry and dynamics of proton-binding in phosphorylation and organocatalytic mechanisms are still not fully understood.

View Article and Find Full Text PDF

Metabolomics analyses enable the examination and identification of endogenous biochemical reaction products, revealing information on the metabolic pathways and processes active within a living cell or organism. Determination of metabolic shifts can provide important information on a treatment or disease. Unlike other omics fields that typically have analytes of the same chemical class with common building blocks, those that fall under the nomenclature of metabolites encompass a wide array of different compounds with very diverse physiochemical properties.

View Article and Find Full Text PDF

ATM Expression and Activation in Ataxia Telangiectasia Patients with and without Class Switch Recombination Defects.

J Clin Immunol

January 2025

Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children´s Medical Center, Tehran University of Medical Sciences, 62 Qarib St., Keshavarz Blvd, Tehran, 14194, Iran.

Background: Ataxia telangiectasia mutated (ATM) kinase plays a critical role in DNA double-strand break (DSB) repair. Ataxia telangiectasia (A-T) patients exhibit abnormalities in immunoglobulin isotype expression and class switch recombination (CSR). This study investigates the role of residual ATM kinase expression and activity in the severity of A-T disease.

View Article and Find Full Text PDF

Event-triggered adaptive compensation control for stochastic nonlinear systems with multiple failures: An improved switching threshold strategy.

ISA Trans

January 2025

School of Mathematics and Physics, Qingdao University of Science and Technology, Qingdao 266061, China; Qingdao Innovation Center of Artificial Intelligence Ocean Technology, Qingdao 266061, China; The Research Institute for Mathematics and Interdisciplinary Sciences, Qingdao University of Science and Technology, Qingdao 266061, China. Electronic address:

This paper considers the event-triggered adaptive fault-tolerant control (FTC) problem for a class of stochastic nonlinear systems suffering from finite number of actuator failures and abrupt system external failure. Unlike existing event-triggered mechanisms (ETMs), this paper proposes an improved switching threshold mechanism (STM) that effectively addresses the potential system security hazards caused by large signal impulses when both the magnitude size of the controller and its rate of change are too large, while also saving energy consumption. Especially, when the occurrence of both actuator failure and system external failure may lead to over-change rate of the controller, by using the multi-dimensional Taylor network (MTN) approximation technique, the adaptive fault-tolerant control scheme designed based on the improved STM not only has lower resource consumption, but also indirectly improves the control performance of the system by ensuring the system security operation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!