We used engineered zinc finger peptides (ZFPs) to bind selectively to predetermined sequences in human mtDNA. Surprisingly, we found that engineered ZFPs cannot be reliably routed to mitochondria by using only conventional mitochondrial targeting sequences. We here show that addition of a nuclear export signal allows zinc finger chimeric enzymes to be imported into human mitochondria. The selective binding of mitochondria-specific ZFPs to mtDNA was exemplified by targeting the T8993G mutation, which causes two mitochondrial diseases, neurogenic muscle weakness, ataxia, and retinitis pigmentosa (NARP) and also maternally inherited Leigh's syndrome. To develop a system that allows the monitoring of site-specific alteration of mtDNA we combined a ZFP with the easily assayed DNA-modifying activity of hDNMT3a methylase. Expression of the mutation-specific chimeric methylase resulted in the selective methylation of cytosines adjacent to the mutation site. This is a proof of principle that it is possible to target and alter mtDNA in a sequence-specific manner by using zinc finger technology.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1750892 | PMC |
http://dx.doi.org/10.1073/pnas.0609502103 | DOI Listing |
Plants (Basel)
December 2024
College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China.
is a representative aromatic species. Wild roses are known for their strong tolerance to highly salty environments, whereas cultivated varieties of roses exhibit lower salt stress tolerance, limiting their development and industrial expansion. Previous studies have shown that C2H2-type zinc finger proteins play a crucial role in plants' resistance to abiotic stresses.
View Article and Find Full Text PDFPharmaceuticals (Basel)
November 2024
Section of Pharmacology, Department of Medicine and Surgery, University of Perugia, 06129 Perugia, Italy.
The expression of oncogene zinc-finger protein 217 (ZNF217) has been reported to play a central role in cancer development, resistance, and recurrence. Therefore, targeting ZNF217 has been proposed as a possible strategy to fight cancer, and there has been much research on compounds that can target ZNF217. The present work investigates the chemo-preventive properties of cucurbitacin D, a compound with a broad range of anticancer effects, in hematological cancer cells, specifically with regard to its ability to modulate ZNF217 expression.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Koltzov Institute of Developmental Biology of Russian Academy of Sciences, 26 Vavilov Street, 119334 Moscow, Russia.
has two paralogs, and , related to the evolutionarily conserved family genes. In mammals, the family consists of , encoding transcription co-factors involved in the regulation of development and cell fate determination. The function of and in remains unclear.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Scientific Platforms, Southern Research, 2000 9th Avenue South, Birmingham, AL 35205, USA.
As a transcription factor, GLI1 plays an important role in cell cycle regulation, DNA replication, and DNA damage responses. The aberrant activation of GLI1 has been associated with cancers such as glioma, osteosarcoma, and rhabdomyosarcoma. The binding of GLI1 to a specific DNA sequence was achieved by five tandem zinc finger motifs (Zif motifs) on the N-terminal part of the molecule.
View Article and Find Full Text PDFCells
December 2024
Université Côte d'Azur, CNRS, INSERM, iBV, 06107 Nice, France.
The Wilms' tumor suppressor WT1 is essential for the development of the heart, among other organs such as the kidneys and gonads. The Wt1 gene encodes a zinc finger transcription factor that regulates proliferation, cellular differentiation processes, and apoptosis. WT1 is also involved in cardiac homeostasis and repair.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!