The human estrogen receptor alpha (ERalpha) gene is driven by multiple promoters, of which the F promoter alone is found to be active in primary osteoblasts. The study was aimed at identifying new regulatory pathways affecting transcription of the receptor in this cell lineage. We generated human osteoblast-like cells, Saos-2, stably transfected with a luciferase-reporter gene downstream of the human ERalpha F promoter (Saos F-Luc), and assayed the reporter response to differentiation-related signals. Over-confluence, shown to stimulate osteoblast differentiation, caused a time-dependent increase of F-promoter activity and correlated with an inactivation of protein kinase C alpha (PKCalpha ). PKC downregulation, obtained by long-term treatment with phorbol 12-myristate 13-acetate (PMA), resulted in promoter stimulation at similar levels in sub-confluent cells. The F promoter contains a putative PMA-responsive AP-1 site, but AP-1 activation was unremarkable in over-confluent cells. Treatment with PP1, a specific inhibitor of the non-receptor tyrosine-kinase c-Src, which is a negative regulator of osteoblast differentiation, showed that the activity of this kinase inhibits the F promoter. In PP1-treated cells, F-promoter activity was not further increased by PMA. Treatment with the generic kinase inhibitor 4-dimethylaminopyridine (DMAP) resulted in a dose-dependent induction of the promoter, which matched a parallel decrease of active c-Src. The effect was c-Src dependent, as DMAP caused no further promoter induction in PP1-treated cells. Overexpression of exogenous human ERalpha resulted in modest promoter stimulation, which required the ligand-independent activator function 1 of the receptor. In murine primary osteoblasts, additional ERalpha signal was observed upon induction of F promoter. In conclusion, we demonstrated a robust PKC/c-Src-dependent and estrogen-independent mechanism modulating transcription of ERalpha in osteoblasts, probably affecting estrogen responsiveness during cell differentiation.

Download full-text PDF

Source
http://dx.doi.org/10.1677/jme.1.02055DOI Listing

Publication Analysis

Top Keywords

promoter
10
human estrogen
8
estrogen receptor
8
receptor alpha
8
protein kinase
8
osteoblast-like cells
8
primary osteoblasts
8
human eralpha
8
osteoblast differentiation
8
f-promoter activity
8

Similar Publications

Background: Interactions between RNA-binding proteins and RNA regulate RNA transcription during osteoporosis. Ferroptosis, a programmed cell death caused by iron metabolism, plays a vital role in osteoporosis. However, the mechanisms by which RNA-binding proteins are involved in ferroptosis during osteoporosis remain unclear.

View Article and Find Full Text PDF

KDM6A facilitates Xist upregulation at the onset of X inactivation.

Biol Sex Differ

January 2025

Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Seattle, WA, 98195, USA.

Background: X chromosome inactivation (XCI) is a female-specific process in which one X chromosome is silenced to balance X-linked gene expression between the sexes. XCI is initiated in early development by upregulation of the lncRNA Xist on the future inactive X (Xi). A subset of X-linked genes escape silencing and thus have higher expression in females, suggesting female-specific functions.

View Article and Find Full Text PDF

Altered 3D genome reorganization mediates precocious myeloid differentiation of aged hematopoietic stem cells in inflammation.

Sci China Life Sci

December 2024

Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.

Inflammation is a driving force of hematopoietic stem cells (HSCs) aging, causing irreversible exhaustion of functional HSCs. However, the underlying mechanism of HSCs erosion by inflammatory insult remains poorly understood. Here, we find that transient LPS exposure primes aged HSCs to undergo accelerated differentiation at the expense of self-renewal, leading to depletion of HSCs.

View Article and Find Full Text PDF

TRADD-mediated pyroptosis contributes to diabetic cardiomyopathy.

Acta Pharmacol Sin

January 2025

Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, 226001, China.

Regulated cell death like pyroptosis is one vital cause of diabetic cardiomyopathy (DCM), which eventually leads to heart failure. Tumor necrosis factor (TNF) receptor-associated death domain protein (TRADD) is an adapter protein with multiple functions that participates in the pathophysiological progress of different cardiovascular disorders via regulating regulated cell death. Studies have shown that TRADD combines with receptor-interacting protein kinase 3 (RIPK3) and facilitates its activation, thereby mediating TNF-induced necroptosis.

View Article and Find Full Text PDF

ABCF1-K430-Lactylation promotes HCC malignant progression via transcriptional activation of HIF1 signaling pathway.

Cell Death Differ

January 2025

Department of Hepatobiliary Surgery of the affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, China.

Lysine lactylation plays critical roles in various diseases, including cancer. Our previous study showed that lactylation of non-histone ABCF1 may be involved in hepatocellular carcinoma (HCC) progression. In this study, we evaluated the prognostic value of ABCF1-K430la in HCC using immunohistochemical staining and performed amino acid point mutations, multi-omics crossover, and biochemical experiments to investigate its biological role and underlying mechanism.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!