Oxytocin (OT) receptors are important regulators of myometrial contractility. By using the activity of large conductance Ca2+-activated K+ (BKCa) channels as readout, we analyzed OT signaling in cells from nonpregnant (NPM) and pregnant (PM) rat myometrium in detail. In nystatin-perforated whole-cell patches from NPM cells, which leave the intracellular integrity intact, OT transiently increased BKCa-mediated outward currents (Iout). This OT-evoked Iout was caused by the Ca2+ transients in response to the Gq/11-mediated activation of phospholipase C and was inhibited by activation of protein kinase A (PKA). In an open-access whole-cell patch (OAP), the OT-induced transient rise in Iout was disrupted whereas the regulation of BKCa by the cAMP/PKA cascade remained intact. OT counteracted the isoprenaline, i.e. the beta-adrenoceptor/Gs-mediated effect in NPM cells measured in OAP. In contrast, OT further enhanced the beta-adrenoceptor/Gs-mediated effect on BKCa activity in PM cells. All OT effects in the OAP were mediated by pertussis toxin-sensitive Gi proteins and PKA. By quantitative real-time PCR and overexpression of the recombinant protein, we demonstrate that an up-regulation of the Gbetagamma-stimulated adenylyl cyclase II during pregnancy is most likely responsible for this switch. By studying the OT-evoked Iout in nystatin-perforated whole-cell patches of PM cells, we further detected that the OT receptor/Gibetagamma-mediated coactivation of adenylyl cyclase II enhanced the beta-adrenoceptor/Gs-induced suppression of the OT-evoked Ca2+ transients and thus diminishes and self-limits OT-induced contractility. The differential regulation of the PKA-mediated suppression of OT-evoked Ca2+ transients and BKCa activity likely supports uterine quiescence during pregnancy.

Download full-text PDF

Source
http://dx.doi.org/10.1210/me.2006-0220DOI Listing

Publication Analysis

Top Keywords

ca2+ transients
12
oxytocin receptors
8
myometrial contractility
8
nystatin-perforated whole-cell
8
whole-cell patches
8
npm cells
8
ot-evoked iout
8
bkca activity
8
adenylyl cyclase
8
suppression ot-evoked
8

Similar Publications

Capsaicin, a polyphenol, is known to regulate energy expenditure and thermogenesis in adipocytes and muscles. However, its role in modulating uncoupling proteins (UCPs) and adenosine triphosphate (ATP)-dependent thermogenesis in muscles remains unclear. This study investigated the mechanisms underlying the role of capsaicin in modulating the UCP- and ATP-dependent thermogenesis in C2C12 myoblasts, as well as the gastrocnemius (GM) and soleus muscles (SM) of mice.

View Article and Find Full Text PDF

Study on Microscopic Properties of Molten NaF-AlF-CaF/LiF/KF Using First-Principles Molecular Dynamics.

J Phys Chem B

January 2025

Key Laboratory for Ecological Metallurgy of Multimetallic Mineral (Ministry of Education), School of Metallurgy, Northeastern University, Shenyang, Liaoning 110819, China.

This study employs first-principles molecular dynamics (FPMD) simulations combined with the Voronoi tessellation method to explore the microstructure, transport properties, electronic properties, and Raman spectra of the NaF-AlF-CaF/LiF/KF systems with varying cryolite ratios, additive types, and concentrations. The results indicate that Na, Ca, Li, and K exist in a free state in the molten salts, while Al forms complex ion groups in the form of [AlF] with F, and free F also exists in the molten salts. In the NaF-AlF-CaF system, the average Al-F distance is slightly shorter than that in the other two systems, while the Al-F coordination number is higher in NaF-AlF-LiF.

View Article and Find Full Text PDF

A challenge in neuroimaging is acquiring frame sequences at high temporal resolution from the largest possible number of pixels. Measuring 1%-10% fluorescence changes normally requires 12-bit or higher bit depth, constraining the frame size allowing imaging in the kHz range. We resolved Ca or membrane potential signals from cell populations or single neurons in brain slices by acquiring fluorescence at 8-bit depth and by binning pixels offline, achieving unprecedented frame sizes at kHz rates.

View Article and Find Full Text PDF

Maladaptive changes in the homeostasis of AEA-TRPV1/CB1R induces pain-related hyperactivity of nociceptors after spinal cord injury.

Cell Biosci

January 2025

State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200438, People's Republic of China.

Background: Neuropathic pain resulting from spinal cord injury (SCI) is associated with persistent hyperactivity of primary nociceptors. Anandamide (AEA) has been reported to modulate neuronal excitability and synaptic transmission through activation of cannabinoid type-1 receptors (CB1Rs) and transient receptor potential vanilloid 1 (TRPV1). However, the role of AEA and these receptors in the hyperactivity of nociceptors after SCI remains unclear.

View Article and Find Full Text PDF

Neuroendocrine cells react to physical, chemical, and synaptic signals originating from tissues and the nervous system, releasing hormones that regulate various body functions beyond the synapse. Neuroendocrine cells are often embedded in complex tissues making direct tests of their activation mechanisms and signaling effects difficult to study. In the nematode worm , four uterine-vulval (uv1) neuroendocrine cells sit above the vulval canal next to the egg-laying circuit, releasing tyramine and neuropeptides that feedback to inhibit egg laying.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!