We investigate the role of mutations of receptor tyrosine kinases as well as their downstream scaffold molecules in leukemogenesis of acute myeloid leukemia (AML) in Chinese patients. Genes of interest included FLT3, PDGFRbeta, KDR, CSF2Rbeta, SOCS1, PIAS3 and SHIP. The coding sequence of these genes was analysed by the reverse transcription-polymerase chain reaction to search novel mutations. A novel mutation (A > T, Q1154L) of SHIP (1 of 192, 0.52%) was identified and another novel mutation (C > T, R685C) of PDGFRbeta (2 of 192, 1.04%). In addition, FLT3 mutations were seen in three of five patients with AML following myelodysplastic syndrome (60%) and 39 of 268 (14.6%) de novo AML patients (P < 0.05). No mutations were found in the coding sequence regions of KDR, CSF2Rbeta, SOCS1 or PIAS3.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/10428190600948048 | DOI Listing |
Cancer Cell Int
December 2024
Center for Prevention and Therapy of Gynecological Cancers, Department of Research, Hualien, 970, Taiwan, ROC.
J Hematol Oncol
December 2024
Department of Integrative Oncology, Shanghai Cancer Center, Fudan University, Shanghai, 200032, China.
Bioorg Med Chem Lett
December 2024
Department of Medicinal Chemistry and Pharmaceutical Analysis, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi 710032, China. Electronic address:
FLT3-ITD and TKD mutants play a central role in acute myeloid leukemia (AML), making FLT3 an attractive target for AML treatment. To discover next-generation FLT3 inhibitors and gather additional structure-activity relationship (SAR) information, we performed structural modifications of G-749 (denfivontinib) utilizing structure simplification and scaffold hopping strategies. Among these derivatives, MY-10 exhibited the most potent and selective inhibition of MV4-11 cell proliferation, demonstrating potent inhibitory activity against FLT3-ITD (IC = 6.
View Article and Find Full Text PDFSemin Respir Crit Care Med
December 2024
Department of Neurology and Rehabilitation Medicine, University of Cincinnati, Cincinnati, Ohio.
Neuromuscular disorders can cause respiratory impairment by affecting the muscle fibers, neuromuscular junction, or innervation of respiratory muscles, leading to significant morbidity and mortality. Over the past few years, new disease-modifying therapies have been developed and made available for treating different neuromuscular disorders. Some of these therapies have remarkable effectiveness, resulting in the prevention and reduction of respiratory complications.
View Article and Find Full Text PDFExpert Opin Ther Pat
December 2024
State Key Laboratory of Bioactive Molecules and Druggability Assessment, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education, Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, Guangzhou, China.
Introduction: Mutations in epidermal growth factor receptor (EGFR) kinase domain consistently activate downstream signaling pathways, such as the PI3K/AKT/mTOR and RAS/RAF/MEK, thereby promoting tumor growth. Although the majority of non-small cell lung cancer (NSCLC) patients harboring EGFR mutations are sensitive to existing EGFR tyrosine kinase inhibitors (EGFR-TKIs), there remains an unmet clinical need for effective therapies targeting EGFR Ex20ins mutations, making direct targeting EGFR Ex20ins mutations a promising therapeutic strategy.
Areas Covered: This review covers the progress of clinical studies targeting EGFR Ex20ins inhibitors and summarizes recent (1 January 2019 - 30 April 2024) patents disclosing EGFR Ex20ins inhibitors available in the Espacenet and CAS SciFinder databases.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!