The degree and kind of agglomeration affect carbon nanotube cytotoxicity.

Toxicol Lett

Empa, Materials Science and Technology, Materials-Biology Interactions Lab, Lerchenfeldstrasse 5, CH-9014 St. Gallen, Switzerland.

Published: January 2007

The urgent need for toxicological studies on carbon nanotubes (CNTs) has arisen from the rapidly emerging applications of CNTs well beyond material science and engineering. In order to provide a basis for comparison to existing epidemiological data, we have investigated CNTs at various degrees of agglomeration using an in vitro cytotoxicity study with human MSTO-211H cells. Non-cytotoxic polyoxyethylene sorbitan monooleate was found to well-disperse CNT. In the present study, the cytotoxic effects of well-dispersed CNT were compared with that of conventionally purified rope-like agglomerated CNTs and asbestos as a reference. While suspended CNT-bundles were less cytotoxic than asbestos, rope-like agglomerates induced more pronounced cytotoxic effects than asbestos fibres at the same concentrations. The study underlines the need for thorough materials characterization prior to toxicological studies and corroborates the role of agglomeration in the cytotoxic effect of nanomaterials.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.toxlet.2006.08.019DOI Listing

Publication Analysis

Top Keywords

toxicological studies
8
cytotoxic effects
8
degree kind
4
kind agglomeration
4
agglomeration affect
4
affect carbon
4
carbon nanotube
4
nanotube cytotoxicity
4
cytotoxicity urgent
4
urgent toxicological
4

Similar Publications

Evaluating amyloid-beta aggregation and toxicity in transgenic Caenorhabditis elegans models of Alzheimer's disease.

Methods Cell Biol

January 2025

Federal University of Santa Maria, Center for Natural and Exact Sciences, Department of Biochemistry and Molecular Biology, Graduate Program in Biological Sciences: Toxicological Biochemistry, Camobi, Santa Maria, RS, Brazil.

Alzheimer's disease (AD) is the leading cause of dementia in the elderly, clinically characterized by memory loss, cognitive decline, and behavioral disturbances. Its pathogenesis is not fully comprehended but involves intracellular depositions of amyloid beta peptide (Aβ) and neurofibrillary tangles of hyperphosphorylated tau. Currently, pharmacological interventions solely slow the progression of symptoms.

View Article and Find Full Text PDF

As the volume of plastic waste from electrical and electronic equipment (WEEE) continues to rise, a significant portion is disposed of in the environment, with only a small fraction being recycled. Both disposal and recycling pose unknown health risks that require immediate attention. Existing knowledge of WEEE plastic toxicity is limited and mostly relies on epidemiological data and association studies, with few insights into the underlying toxicity mechanisms.

View Article and Find Full Text PDF

Background: Jet fuels are a common chemical exposure in occupational settings involving aircraft. Jet fuels are heterogeneous mixtures of aromatic and aliphatic hydrocarbons, as well as non-hydrocarbon performance additives. Several components of jet fuels have been linked to adverse health outcomes.

View Article and Find Full Text PDF

Association between mixed exposure of non-persistent pesticides and liver fibrosis in the general US population: NHANES 2013-2016.

Ecotoxicol Environ Saf

January 2025

Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, PR China. Electronic address:

People are continually and simultaneously exposed to various non-persistent pesticides as these chemicals are ubiquitously distributed in the environment. Toxicological studies have indicated the associations between non-persistent pesticides and liver fibrosis in vitro and in vivo. However, epidemical study on the deleterious effect of non-persistent pesticides on the risk of liver fibrosis is rather limited.

View Article and Find Full Text PDF

Perfluorocarboxylic acids and perfluorosulfonic acids accumulate in food webs, thus posing a serious threat to food safety. The European Food Safety Authority (EFSA) derived a tolerable weekly intake (TWI) of 4.4 ng/kg body weight for the sum of the four so-called EFSA-PFAS in 2020.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!