Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Loma salmonae infections of salmonids culminate in the development of branchial xenomas and subsequent focal hyperplasia of the lamellar or filament epithelium following xenoma rupture and spore release. The effects of this acute branchial disruption upon net ionic flux rates and plasma electrolyte concentrations were determined in juvenile rainbow trout given an experimental oral exposure to L. salmonae. Mean numbers of branchial xenomas peaked at week 5 post-exposure (PE), which coincided with a reduction in the specific growth rate, although there were no significant differences in mass, length or condition of Loma-exposed fish compared with unexposed controls. Following exposure, negative net whole body Na(+) and K(+) fluxes decreased, whereas net Cl(-) fluxes remained unchanged compared with non-exposed control fish. At week 3 PE during the initial branchial xenoma formation stage, there was a significant negative whole body net K(+) flux in Loma-exposed trout compared with other points during the exposure and subsequent infection. Additionally, Loma-exposed fish had marginally elevated plasma Na(+) and Cl(-) concentrations, whilst K(+) levels remained unchanged, compared with control fish. Although there was a progressive decrease in leucocrit, haematocrit remained unchanged over the course of the Loma exposure and subsequent infection. These results suggest that ionic compensation can occur at the gills during the development of xenomas during exposure to L. salmonae and the resultant infection, therefore allowing defence of plasma electrolyte concentrations, unlike the acute ionic disturbances seen with some other parasitic diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1365-2761.2006.00768.x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!