The redox regulation of thiol dependent signaling pathways in cancer.

Curr Pharm Des

School of Chemistry, Building F11, University of Sydney, NSW, Australia.

Published: January 2007

AI Article Synopsis

  • Reactive oxygen species (ROS) act as crucial second messengers in various signal transduction pathways, impacting both cell growth and programmed cell death through modifications of proteins.
  • The balance of redox states is critical for healthy cell function, and disruptions in this balance are often linked to diseases like cancer, where tumor cells exhibit altered redox metabolism.
  • Understanding ROS signaling and its differences between cancerous and healthy cells opens up potential therapeutic strategies aimed at targeting these redox profile alterations in cancer treatment.

Article Abstract

Reactive oxygen species (ROS) play a central role as second messengers in many signal transduction pathways, where they can post-translationally modify proteins via the oxidation of redox sensitive cysteine residues. The range of cellular processes under redox regulation is extensive and includes both the proliferative and apoptotic pathways. Control of the cellular redox environment is therefore essential for normal physiological function and perturbations to this redox balance are characteristic of many pathological states. Oxidative stress is particularly prevalent in cancer, where many malignant cell types possess an abnormal redox metabolism involving down-regulation of antioxidant enzymes and impaired mitochondrial function. This provides a major opportunity to design therapeutic strategies to selectively target cancer cells based on their redox profile. This review will provide a background to this emerging field by summarizing the known redox biochemistry of ROS signaling. The mechanisms of ROS generation by the action of oxidoreductases and nitric oxide synthases will be discussed in conjunction with the cell's major antioxidant defenses, with special emphasis placed on the subcellular location of these redox reactions. The effect of ROS on proliferation and apoptosis will be examined by looking at interactions with transcription factors and the Akt, TNF and MAPK signaling pathways. The review will also outline the major differences in redox metabolism between cancer cells and their non-malignant counterparts. Although the full extent of the ROS regulation of signaling pathways is only beginning to be mapped, early indications are that this paradigm will provide new therapeutic targets for cancer therapy.

Download full-text PDF

Source
http://dx.doi.org/10.2174/138161206779010549DOI Listing

Publication Analysis

Top Keywords

signaling pathways
12
redox
10
redox regulation
8
redox metabolism
8
cancer cells
8
review will
8
will provide
8
pathways
5
cancer
5
ros
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!