Recent evolutionary models of range limits emphasize the importance of ecological and demographic factors operating at species' margins. This study aims to establish the ecological context driving population boundaries in Gilia tricolor, a native California annual restricted to distinct habitat patches in the coastal range of California. A transplant experiment in one hillside G. tricolor population examined the roles of competition and soil chemistry as well as litter and biomass accumulation in setting local population boundaries. Results indicate that boundaries are maintained primarily by inhibition of seedling emergence by vegetation and litter, and that upslope and downslope population boundaries are heterogeneous in litter biomass and transplant performance. Consistent emergence inhibition in undisturbed, peripheral sites maintains limits to the distribution of G. tricolor in this population. Fine-scaled ecological heterogeneity and heterogeneous boundary conditions likely play important roles in limiting adaptation and subsequent range expansion at population boundaries in G. tricolor.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1890/0012-9658(2006)87[2736:efltdo]2.0.co;2 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!