The surface of an acrylic fibre was modified with a commercial nitrilase (EC 3.5.5.1). The effect of fibre solvents and polyols on nitrilase catalysis efficiency and stability was investigated. The nitrilase action on the acrylic fabric was improved by the combined addition of 1 M sorbitol and 4% N, N-dimethylacetamide. The colour levels for samples treated with nitrilase increased 156% comparing to the control samples. When the additives were introduced in the treatment media, the colour levels increased 199%. The enzymatic conversion of nitrile groups into the corresponding carboxylic groups, on the fibre surface, was followed by the release of ammonia and polyacrylic acid. A surface erosion phenomenon took place and determined the "oscillatory" behaviour of the amount of dye uptake with time of treatment. These results showed that the outcome of the application of the nitrilase for the acrylic treatment is intimately dependent on reaction media parameters, such as time, enzyme activity and formulation.

Download full-text PDF

Source
http://dx.doi.org/10.1002/biot.200600068DOI Listing

Publication Analysis

Top Keywords

colour levels
8
nitrilase
6
nitrilase surface
4
surface modification
4
acrylic
4
modification acrylic
4
acrylic fibres
4
fibres surface
4
surface acrylic
4
acrylic fibre
4

Similar Publications

In recent years, Brazil's non-White (Brown and Black) population became a numerical majority for the first time since the 19th century. Although we know this change was mostly due to racial reclassification, we do not know how such changes are related to skin color, the primary marker of race in Brazil. Using data from six Latin American Public Opinion Project (LAPOP), or America's Barometer, surveys from 2010 to 2023, we examine how changes in racial self-identification (White, Brown, or Black) are related to respondent skin color (light, medium, or dark).

View Article and Find Full Text PDF

Background: The prevalence and burden of atopic dermatitis (AD) are disproportionately high in individuals with skin of colour (SOC). Previous research shows that risk for xerosis and/or dyspigmentation is heightened in this population and may be more bothersome. However, there are no patient-reported instruments developed specifically for these disease sequelae in patients with SOC.

View Article and Find Full Text PDF

Background matching and disruptive coloration are defense mechanisms of animals against visual predators. Disruptive coloration tends to evolve in microhabitats that are visually heterogeneous, while background matching is favored in microhabitats that are chromatically homogeneous. Controlling for the phylogeny, we explored the evolution of the coloration and the marking patterns in the sexual dichromatic and widely distributed neotropical grasshoppers of the genus Sphenarium.

View Article and Find Full Text PDF

The integration of barcode technology with smartphones on paper-based analytical devices (PADs) presents a promising approach to bridging manual detection with digital interpretation and data storage. However, previous studies of 1D barcode approaches have been limited to providing only a "yes/no" response for analyte detection. Herein, a method of using barcode readout for semiquantitative signal detection on PADs has been achieved through the integration of barcode technology with a distance-based measurement concept on PADs.

View Article and Find Full Text PDF

Antibody-dependent cell-mediated cytotoxicity (ADCC) by NK cells is a key mechanism in anti-cancer therapies with monoclonal antibodies, including cetuximab (EGFR-targeting) and avelumab (PDL1-targeting). Fc gamma receptor IIIa (FcγRIIIa) polymorphisms impact ADCC, yet their clinical relevance in NK cell functionality remains debated. We developed two complementary flow cytometry assays: one to predict the FcγRIIIa-V158F polymorphism using a machine learning model, and a 15-color flow cytometry panel to assess antibody-induced NK cell functionality and cancer-immune cell interactions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!