Downregulation of gamma interferon receptor 1 by Kaposi's sarcoma-associated herpesvirus K3 and K5.

J Virol

Tumor Virology Division, New England Regional Primate Research Center, Department of Microbiology and Molecular Genetics, Harvard Medical School, 1 Pine Hill Drive, Southborough, MA 01772, USA.

Published: March 2007

Upon viral infection, the major defense mounted by the host immune system is activation of the interferon (IFN)-mediated antiviral pathway. In order to complete their life cycles, viruses must modulate the host IFN-mediated immune response. The K3 and K5 proteins of a human tumor-inducing herpesvirus, Kaposi's sarcoma-associated herpesvirus (KSHV), have been shown to downregulate the surface expression of host immune modulatory receptors by increasing their endocytosis rates, which leads to suppression of cell-mediated immunity. In this report, we demonstrate that K3 and K5 both specifically target gamma interferon receptor 1 (IFN-gammaR1) and induce its ubiquitination, endocytosis, and degradation, resulting in downregulation of IFN-gammaR1 surface expression and, thereby, inhibition of IFN-gamma action. Mutational analysis indicated that K5 appeared to downregulate IFN-gammaR1 more strongly than K3 and that the amino-terminal ring finger motif and the carboxyl-terminal region of K5 were necessary for IFN-gammaR1 downregulation. These results suggest that KSHV K3 and K5 suppress both cytokine-mediated and cell-mediated immunity, which ensures efficient viral avoidance of host immune controls.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1865953PMC
http://dx.doi.org/10.1128/JVI.01961-06DOI Listing

Publication Analysis

Top Keywords

host immune
12
gamma interferon
8
interferon receptor
8
kaposi's sarcoma-associated
8
sarcoma-associated herpesvirus
8
surface expression
8
cell-mediated immunity
8
downregulation gamma
4
receptor kaposi's
4
herpesvirus viral
4

Similar Publications

Introduction: The gut microbiota plays a pivotal role in influencing host health, through the production of metabolites and other key signalling molecules. While the impact of specific metabolites or taxa on host cells is well-documented, the broader impact of a disrupted microbiota on immune homeostasis is less understood, which is particularly important in the context of the increasing overuse of antibiotics.

Methods: Female C57BL/6 mice were gavaged twice daily for four weeks with Vancomycin, Polymyxin B, or PBS (control).

View Article and Find Full Text PDF

Background: Maintenance immunosuppression is required for suppression of alloimmunity or allograft rejection. However, continuous use of immunosuppressants may lead to various side effects, necessitating the use of alternative immunosuppressive drugs. The early secreted antigenic target of 6 kDa (ESAT-6) is a virulence factor and immunoregulatory protein of mycobacterium tuberculosis (Mtb), which alters host immunity through dually regulating development or activation of various immune cells.

View Article and Find Full Text PDF

The role of Exo70s in plant defense against pathogens and insect pests and their application for crop breeding.

Mol Breed

February 2025

National Key Laboratory of Crop Genetic Improvement and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China.

Plant diseases caused by pathogens and pests lead to crop losses, posing a threat to global food security. The secretory pathway is an integral component of plant defense. The exocyst complex regulates the final step of the secretory pathway and is thus essential for secretory defense.

View Article and Find Full Text PDF

The most common STD that triggers cervical cancer is the human papillomavirus. More than 20 types of human papillomavirus (HPV) can induce uterine cervical cancer. Almost all women acquire genital HPV infection soon after their first intercourse, with most of them clearing the virus within 3 years.

View Article and Find Full Text PDF

Background: Macrophages are a critical component of the innate immune system, derived from monocytes, with significant roles in anti-inflammatory and anti-tumour activities. In the tumour microenvironment, however, macrophages are often reprogrammed into tumour-associated macrophages (TAMs), which promote tumour growth, metastasis, and therapeutic resistance.

Purpose: To review recent advancements in the understanding of macrophage polarisation and reprogramming, highlighting their role in tumour progression and potential as therapeutic targets.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!