We present and validate a novel diffusion tensor imaging (DTI) approach for segmenting the human whole-brain into partitions representing grey matter (GM), white matter (WM) and cerebrospinal fluid (CSF). The approach utilizes the contrast among tissue types in the DTI anisotropy vs. diffusivity rotational invariant space. The DTI-based whole-brain GM and WM fractions (GMf and WMf) are contrasted with the fractions obtained from conventional magnetic resonance imaging (cMRI) tissue segmentation (or clustering) methods that utilized dual echo (proton density-weighted (PDw)), and spin-spin relaxation-weighted (T2w) contrast, in addition to spin-lattice relaxation weighted (T1w) contrasts acquired in the same imaging session and covering the same volume. In addition to good correspondence with cMRI estimates of brain volume, the DTI-based segmentation approach accurately depicts expected age vs. WM and GM volume-to-total intracranial brain volume percentage trends on the rapidly developing brains of a cohort of 29 children (6-18 years). This approach promises to extend DTI utility to both micro and macrostructural aspects of tissue organization.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1995007PMC
http://dx.doi.org/10.1016/j.neuroimage.2006.10.029DOI Listing

Publication Analysis

Top Keywords

diffusion tensor
8
tissue segmentation
8
brain volume
8
tensor imaging-based
4
tissue
4
imaging-based tissue
4
segmentation validation
4
validation application
4
application developing
4
developing child
4

Similar Publications

Diffusion tensor imaging for detecting biomarkers of idiopathic epilepsy in dogs.

Front Vet Sci

January 2025

Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada.

Idiopathic epilepsy (IE) is the most common neurological disease in dogs. Approximately 1/3 of dogs with IE are resistant to anti-seizure medications (ASMs). Because the diagnosis of IE is largely based on the exclusion of other diseases, it would be beneficial to indicate an IE biomarker to better understand, diagnose, and treat this disease.

View Article and Find Full Text PDF

Objectives: To investigate glymphatic function in idiopathic normal pressure hydrocephalus (iNPH) using the diffusion tensor image analysis along the perivascular space (DTI-ALPS) method and to explore the associations of ALPS index with ventriculomegaly and white matter hyperintensities (WMH).

Materials And Methods: This study included 41 patients with iNPH and 40 age- and sex-matched normal controls (NCs). All participants underwent brain MRI.

View Article and Find Full Text PDF

Reward Decision Network Disconnection in Poststroke Apathy: A Prospective Multimodality Imaging Study.

Hum Brain Mapp

February 2025

Department of Neurology, Centre for Leading Medicine and Advanced Technologies of IHM, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.

Apathy is a common neuropsychiatric symptom following stroke, characterized by reduced goal-directed behavior. The reward decision network (RDN), which plays a crucial role in regulating goal-directed behaviors, is closely associated with apathy. However, the relationship between poststroke apathy (PSA) and RDN dysfunction remains unclear due to apathy heterogeneity, the confounding effect of depression and individual variability in lesion impacts.

View Article and Find Full Text PDF

Connectional differences between humans and macaques in the MT+ complex.

iScience

January 2025

State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.

MT+ is pivotal in the dorsal visual stream, encoding tool-use characteristics such as motion speed and direction. Despite its conservation between humans and monkeys, differences in MT+ spatial location and organization may lead to divergent, yet unexplored, connectivity patterns and functional characteristics. Using diffusion tensor imaging, we examined the structural connectivity of MT+ subregions in macaques and humans.

View Article and Find Full Text PDF

Objective: To investigate differences in the microstructure of the spinothalamic tract (STT) white matter in people with chronic neck and shoulder pain (CNSP) using diffusion tensor imaging, and to assess its correlation with pain intensity and duration of the pain.

Materials And Methods: A 3.0T MRI scanner was used to perform diffusion tensor imaging scans on 31 people with CNSP and 24 healthy controls (HCs), employing the Automatic Fiber Segmentation and Quantification (AFQ) method to extract the STT and quantitatively analyze the fractional anisotropy (FA) and mean diffusivity (MD), reflecting the microstructural integrity of nerve fibers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!