Steric communication of chiral information observed in dendronized polyacetylenes.

J Am Chem Soc

Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, USA.

Published: December 2006

Structural and retrostructural analysis of helical dendronized polyacetylenes (i.e., self-organizable polyacetylenes containing first generation dendrons or minidendrons as side groups) synthesized by the polymerization of minidendritic acetylenes with [Rh(nbd)Cl]2 (nbd = 2,5-norbornadiene) reveals an approximately 10% change in the average column stratum thickness (l) of the cylindrical macromolecules with a chiral periphery, through which a strong preference for a single-handed screw-sense is communicated. The cylindrical macromolecules reversibly interconvert between a three-dimensional (3D) centered rectangular lattice (Phi r-c,k) exhibiting long-range intracolumnar helical order at lower temperatures and a two-dimensional (2D) hexagonal columnar lattice (Phi h) with short-range helical order at higher temperatures. A polymer containing chiral, nonracemic peripheral alkyl tails is found to have a larger l as compared to the achiral polymers. In methyl cyclohexane solution, the same polymer exhibits an intense signal in circular dichroism (CD) spectra, whose intensity decreases upon heating. The observed change in l indicates that the chiral tails alter the polymer conformation from that of the corresponding polymer with achiral side chains. This change in conformation results in a relatively large free energy difference (DeltaGh) favoring one helix-sense over the other (per monomer residue). The capacity to distort the polymer conformation and corresponding free energy is related to the population of branches in the chiral tails and their distance from the polymer backbone by comparison to recently reported first and second generation dendronized polyphenylacetylenes.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja0665848DOI Listing

Publication Analysis

Top Keywords

dendronized polyacetylenes
8
cylindrical macromolecules
8
lattice phi
8
helical order
8
chiral tails
8
polymer conformation
8
conformation corresponding
8
free energy
8
polymer
6
chiral
5

Similar Publications

Cyclopolymerization is a powerful method for synthesizing polyacetylenes containing four- to seven-membered rings. However, the structure of the repeat unit only consists of mono-cycloalkene due to the single cyclization of diyne monomers. Herein, we demonstrate a novel cascade cyclopolymerization to synthesize polyacetylenes containing fused bicyclic rings from triyne monomers containing bulky dendrons via sequential cascade ring-closing metathesis.

View Article and Find Full Text PDF

Metathesis cyclopolymerization (CP) of α,ω-diynes is a powerful method to prepare functional polyacetylenes (PAs). PAs have long been studied due to their interesting electrical, optical, photonic, and magnetic properties which make them candidates for use in various advanced applications. Grubbs catalysts are widely used throughout synthetic chemistry, largely due to their accessibility, high reactivity, and tolerance to air, moisture, and many functional groups.

View Article and Find Full Text PDF

Recent progress on polymer-based fluorescent and colorimetric chemosensors.

Chem Soc Rev

January 2011

Department of Chemistry and Nano Science BK21, Ewha Womans University, Seoul 120-750, Republic of Korea.

Recently, fluorescent or colorimetric chemosensors based on polymers have attracted great attention due to several important advantages, such as their simplicity of use, signal amplification, easy fabrication into devices, and combination of different outputs, etc. This tutorial review will cover polymer-based optical chemosensors from 2007 to 2010.

View Article and Find Full Text PDF

Nanomechanical function from self-organizable dendronized helical polyphenylacetylenes.

J Am Chem Soc

June 2008

Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, USA.

Self-organizable dendronized helical polymers provide a suitable architecture for constructing molecular nanomachines capable of expressing their motions at macroscopic length scales. Nanomechanical function is demonstrated by a library of self-organized helical dendronized cis-transoidal polyphenylacetylenes ( cis-PPAs) that possess a first-order phase transition from a hexagonal columnar lattice with internal order (varphi h (io)) to a hexagonal columnar liquid crystal phase (varphi h). These polymers can function as nanomechanical actuators.

View Article and Find Full Text PDF

Steric communication of chiral information observed in dendronized polyacetylenes.

J Am Chem Soc

December 2006

Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, USA.

Structural and retrostructural analysis of helical dendronized polyacetylenes (i.e., self-organizable polyacetylenes containing first generation dendrons or minidendrons as side groups) synthesized by the polymerization of minidendritic acetylenes with [Rh(nbd)Cl]2 (nbd = 2,5-norbornadiene) reveals an approximately 10% change in the average column stratum thickness (l) of the cylindrical macromolecules with a chiral periphery, through which a strong preference for a single-handed screw-sense is communicated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!