The microwave-promoted alkoxycarbonylation of aryl iodides using reaction vessels pre-pressurized with carbon monoxide is reported. Reactions are performed using 0.1 mol% palladium acetate as catalyst, DBU as base and are complete within 20-30 min. A range of aryl iodide substrates can be converted to the corresponding esters using this methodology. Primary and secondary alcohols work well whereas a tertiary alcohol substrate proves less reactive. The potential for scale-up of the reaction has also been explored.

Download full-text PDF

Source
http://dx.doi.org/10.1039/b614025dDOI Listing

Publication Analysis

Top Keywords

alkoxycarbonylation aryl
8
aryl iodides
8
carbon monoxide
8
reaction vessels
8
iodides gaseous
4
gaseous carbon
4
monoxide pre-pressurized
4
pre-pressurized reaction
4
vessels conjunction
4
conjunction microwave
4

Similar Publications

Visible-Light-Triggered Mn(CO)-Catalyzed Carbonylation of (Hetero)aryl Chlorides.

Org Lett

January 2025

Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.

Carbonylation of aryl electrophiles is an important method for constructing aromatic carbonyl compounds for materials science and pharmaceutical applications. However, there have been few studies on the carbonylation of abundant, inexpensive aryl chlorides. Moreover, the existing carbonylation methods usually require a high temperature, control of the CO pressure, and structurally complex catalysts and ligands.

View Article and Find Full Text PDF

Total syntheses of the parvistemoline alkaloids enabled by stereocontrolled Ir/Pd-catalyzed allylic alkylation.

Nat Commun

December 2024

Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China.

The functionalized polycycle with densely contiguous tertiary stereocenters is a formidable challenge in synthesizing the parvistemoline family of Stemona alkaloids. We herein report their catalytic, asymmetric total syntheses in 13-14 steps from commercially available 2-(methoxycarbonyl)-pyrrole, featuring the development and deployment of an Ir/Pd-synergistically-catalyzed allylation of α-non-substituted keto esters with secondary aryl-substituted alcohols, stereodivergently accessible to four stereoisomers. Using chiral Pd-enolate and Ir π-allyl complex under neutral conditions, no epimerization occurs.

View Article and Find Full Text PDF

Palladium-catalyzed carbonylation reactions of -phenylene dihalides were studied using aminoethanols as heterobifunctional ,-nucleophiles. The activity of aryl-iodide and -bromide as well as the chemoselective transformation of amine and hydroxyl functionalities were studied systematically under carbonylation conditions. Aminocarbonylation can be selectively realized under optimized conditions, enabling the formation of amide alcohols, and the challenging alkoxycarbonylation can also be proved feasible, enabling amide-ester production.

View Article and Find Full Text PDF

Ligand-Controlled Regioselective Alkoxycarbonylation of Nonfunctionalized Unsymmetric Internal Alkynes.

Chemistry

December 2024

Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China.

Pd-catalyzed alkoxycarbonylation of internal alkynes provides a straightforward access to α,β-disubstituted acrylic esters. Compared with the well-established regioselective alkoxycarbonylation of terminal alkynes, the regioselective hydrocarboxylation of non-functionalized unsymmetric internal alkynes was more challenging owing to the delicate differences of properties between the two substituents. Herein, by using either monophosphine ligand based on 2,3-dihydrobenzo[d][1,3]oxaphosphole motif or bidentate ligand Ph-Phox, the regioselective alkoxycarbonylations of aryl-aryl, aryl-alkyl and alkyl-alkyl disubstituted alkynes were achieved, giving a diversity of trisubstituted α,β-unsaturated carboxylic esters with moderate to excellent yields and high regioselectivity.

View Article and Find Full Text PDF

Gold-Catalyzed Alkoxy-Carbonylation of Aryl and Vinyl Iodides.

Angew Chem Int Ed Engl

October 2024

Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal-, 462 066, India.

Herein, for the first time, we disclose the gold-catalyzed alkoxy-carbonylation of aryl and vinyl iodides utilizing ligand-enabled Au(I)/Au(III) redox catalysis. The present methodology is found to be general, efficient, employs mild reaction conditions and showcases a broad substrate scope even with structurally complex molecules. Density functional theory (DFT) calculations revealed mechanistic pathways distinct from those of conventional transition metal-catalyzed carbonylation reactions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!