Retinoic acid (RA) is a signaling molecule in the morphogenesis of the mammary gland, modulating the expression of matrix metalloproteinases (MMPs). The aim of this paper was to study the role of RA during weaning, which consists of three events: apoptosis of the secretory cells, degradation of the extracellular matrix, and adipogenesis. CRABP II and CRBP-1 carrier proteins increased significantly during weaning compared with lactating glands but reverted to control values after the litter resuckled. The effects of RA are mediated by the nuclear receptors RARalpha, RARbeta, RARgamma, and RXRalpha, which underwent an increase in protein levels during weaning. In an attempt to elucidate the RARalpha-dependent signaling pathway, ChIP assays were performed. The results showed the binding of RARalpha to the MMP-9 promoter after 24- and 72-h weaning together with its coactivator p300; this fact could be responsible for the increase found in MMP-9 mRNA and protein levels in these conditions. Expression of related MMPs (MMP-2 and MMP-3) was also increased during weaning. Using gelatine zymography, we observed a time-dependent increase in active forms of MMP-9 and MMP-2. On the other hand, the inhibitor of MMPs, TIMP-1, was almost undetectable at 24- and 72-h weaning by Western blot. The role of retinoids in matrix remodeling is reinforced by the fact that administration of an acute dose of retinol palmitate to control lactating rats also induces MMP-9 expression. This emphasizes the importance of retinoids in vivo to regulate mammary gland involution.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpendo.00463.2006DOI Listing

Publication Analysis

Top Keywords

mammary gland
12
mmp-9 expression
8
increased weaning
8
protein levels
8
24- 72-h
8
72-h weaning
8
weaning
6
mmp-9
5
retinoids induce
4
induce mmp-9
4

Similar Publications

Background: Mastopexy combined with implant placement is a complex cosmetic surgery due to the dual nature of the procedure. Various mammoplasty techniques and implant types add to its intricacy. This study aimed to evaluate the effectiveness of an internal breast lift in correcting pseudoptosis, grade 1 breast ptosis, and asymmetries, thereby offering a safer alternative with reduced morbidity and avoiding the creation of an inverted T scar.

View Article and Find Full Text PDF

Tissue microenvironments are extremely complex and heterogeneous. It is challenging to study metabolic interaction between the different cell types in a tissue with the techniques that are currently available. Here we describe a multimodal imaging pipeline that allows cell type identification and nanoscale tracing of stable isotope-labeled compounds.

View Article and Find Full Text PDF

Background: Immunoglobulin A (IgA) plays a crucial role in the maturation the neonatal mucosal barrier. The accumulation of IgA antibody-secreting cells (ASCs) in the lactating mammary gland facilitates the secretion of IgA antibodies into milk, which are then passively to the suckling newborn, providing transient immune protection against gastrointestinal pathogens. Physiologically, full-term infants are unable to produce IgA, required for mucosal barrier maturation for at least 10 days after birth.

View Article and Find Full Text PDF

Mammary glands development is influenced by endocrine signaling, which remodels epithelial and stromal compartments. Reactive stroma phenotype is observed when stromal disturbances occur, leading to changes in extracellular matrix composition and occurrence of reactive cell types. One of the triggers of these alterations is endocrine-disrupting chemical exposure, such as bisphenol A (BPA).

View Article and Find Full Text PDF

Improving mammary gland epithelial cells proliferation through nutrition is an important approach for enhancing sow milk production and piglet growth. An intermediate metabolite of valine, 3-hydroxyisobutyrate (3-HIB), regulates cellular lipid metabolism. In the present study, we investigated the effects of 3-HIB on porcine mammary gland epithelial cells proliferation and lipid metabolism.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!