Artificial synthesis of hollow cell walls of diatoms is an ultimate target of nanomaterial science. The addition of some water-soluble polymers such as sodium polymethacrylate to a solution of water/oil/water emulsion system, which is an essential step of the simple synthetic procedure of silica hollow spheres (microcapsules), led to the formation of silica hollow spheres with nano-macroholes (>100 nm) in their shell walls, the morphologies of which are analogous to those of diatom earth.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/nl062298i | DOI Listing |
Chemosphere
January 2025
Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China; Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China; HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute, Futian, Shenzhen, Guangdong Province, China. Electronic address:
Recent studies have raised concerns about the potential toxicity of amorphous silica (SiO) nanoparticles (NPs). This investigation explores the uptake, transport, and transpiration of silica NPs in Apium graveolens var. secalinum.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Laboratory of Crystallographic Studies, Instituto Andaluz de Ciencias de la Tierra, Consejo Superior de Investigaciones Científica, Armilla 18100, Spain.
Revealing the origin of life and unambiguously detecting fossil remains of the earliest organisms are closely related aspects of the same scientific research. The synthesis of prebiotic molecular building blocks of life and the first compartmentalization into protocells have been considered two events apart in time, space, or both. We conducted lightning experiments in borosilicate reactors filled with a mixture of gases mimicking plausible geochemical conditions of early Earth.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China; Institute of Advanced Materials, China University of Petroleum (East China), Qingdao 266580, China.
Research on stimuli-responsive micro-nanocontainers has gained attention for targeted corrosion inhibition and controlled emulsification-demulsification in oil recovery. However, existing nanocontainers face issues like irreversible drug release and limited functionality. This study presents a multi-functional nanocontainer design with reversible drug release and emulsification-demulsification capabilities.
View Article and Find Full Text PDFFood Chem
December 2024
Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Hubei Hongshan Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Wuhan 430062, China; Xinjiang Uygur Autonomous Region Saihu Fishery Science and Technology Development Company Limited, Bortala Mongol Autonomous Prefecture, 833500, China. Electronic address:
Adv Sci (Weinh)
December 2024
Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
The anti-tumor efficacy of current pharmacotherapy is severely hampered due to the adaptive evolution of tumors, urgently needing effective therapeutic strategies capable of breaking such adaptability. Metabolic reprogramming, as an adaptive survival mechanism, is closely related to therapy resistance of tumors. Colorectal cancer (CRC) cells exhibit a high energy dependency that is sustained by an adaptive metabolic conversion between glucose and glutamine, helping tumor cells to withstand nutrient-deficient microenvironments and various treatments.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!