Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We have studied morphology and phase segregation of AlInP shells on GaAs nanowires. Photoluminescence measurements on single core-shell nanowires indicated variations in the shell composition, and phase segregation was confirmed by cross-sectional scanning transmission electron microscopy on 30 nm thin slices of the wires. It was discovered that Al-rich domains form in the <112> directions where two {110} shell facets meet during growth. We propose that the mechanism behind this phase segregation is a variation in the chemical potential along the circumference of the nanowire together with a difference in diffusion lengths for the different growth species. From the morphology of the core and the shell, we conclude that the side facet growth is temperature dependent forming {112}facets at low growth temperature and {110} facets at high growth temperature.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/nl061692d | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!