Multi-gene engineering: simultaneous expression and knockdown of six genes off a single platform.

Biotechnol Bioeng

Institute for Chemical and Bioengineering, ETH Zurich, HCI F115, Wolfgang-Pauli-Strasse 10, CH-8093 Zurich, Switzerland.

Published: April 2007

Increases in our understanding of gene function have greatly expanded the repertoire of possible genetic interventions at our disposal with the consequence that many genetic engineering applications require multiple manipulations in which target genes can be both overexpressed and silenced in a simple and co-ordinated manner. Using synthetic introns as a source of encoding short-interfering RNA (siRNA), we demonstrate that it is possible to simultaneously express both a transgene and siRNA from a single polymerase (Pol) II promoter. By encoding siRNA as an intron between two protein domains requiring successful splicing for functionality, it was possible to demonstrate that splicing was occurring, that the coding genes (exonic transgenes) resulted in functional protein, and that the spliced siRNA-containing lariat was capable of modulating expression of a separate target gene. We subsequently extended this concept to develop pTRIDENT-based multi-cistronic vectors that were capable of co-ordinated expression of up to three siRNAs and three transgenes off a single genetic platform. Such multi-gene engineering technology, enabling concomitant transgene overexpression and target gene knockdown, should be useful for therapeutic, biopharmaceutical production, and basic research applications.

Download full-text PDF

Source
http://dx.doi.org/10.1002/bit.21303DOI Listing

Publication Analysis

Top Keywords

multi-gene engineering
8
target gene
8
engineering simultaneous
4
simultaneous expression
4
expression knockdown
4
knockdown genes
4
genes single
4
single platform
4
platform increases
4
increases understanding
4

Similar Publications

CD70-targeted iPSC-derived CAR-NK cells display potent function against tumors and alloreactive T cells.

Cell Rep Med

December 2024

Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 311121, China; Institute of Hematology, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou 310058, China. Electronic address:

Clinical application of autologous chimeric antigen receptor (CAR)-T cells is complicated by limited targeting of cancer types, as well as the time-consuming and costly manufacturing process. We develop CD70-targeted, induced pluripotent stem cell-derived CAR-natural killer (NK) (70CAR-iNK) cells as an approach for universal immune cell therapy. Besides the CD70-targeted CAR molecule, 70CAR-iNK cells are modified with CD70 gene knockout, a high-affinity non-cleavable CD16 (hnCD16), and an interleukin (IL)-15 receptor α/IL-15 fusion protein (IL15RF).

View Article and Find Full Text PDF

Aspergillus oryzae is a widely used host for heterologous expression of fungal natural products. However, the vectors previously developed are not convenient for use and screening positive transformants by PCR and fermentation is time- and effort-consuming. Hence, three plug-and-play vectors were developed here for multi-gene expression and liquid chromatography mass spectrometry detection was introduced to screen positive transformants.

View Article and Find Full Text PDF

The global race against antimicrobial resistance requires novel antimicrobials that are not only effective in killing specific bacteria, but also minimize the emergence of new resistances. Recently, CRISPR/Cas-based antimicrobials were proposed to address killing specificity with encouraging results. However, the emergence of target sequence mutations triggered by Cas-cleavage was identified as an escape strategy, posing the risk of generating new antibiotic-resistance gene (ARG) variants.

View Article and Find Full Text PDF

The Cleavage Stimulation Factor (CstF) complex, consisting of three subunits, is essential for the 3' end processing of precursor messenger RNA (pre-mRNA). In mammals, this complex includes CstF50, CstF64, and CstF77, named according to their molecular weights, and these proteins are conserved across many organisms. However, the functional roles of the three CstF genes (, , and ) in , a major rice pest, have not been fully explored.

View Article and Find Full Text PDF

Introduction: With the implementation of low-dose computed tomography screening, multiple pulmonary tumor nodules are diagnosed with increasing frequency and the selection of surgical treatments versus systemic therapies has become challenging on a daily basis in clinical practice. In the presence of multiple carcinomas, especially adenocarcinomas, pathologically determined to be of pulmonary origin, the distinction between separate primary lung carcinomas (SPLCs) and intrapulmonary metastases (IPMs) is important for staging, management, and prognostication.

Methods: We systemically reviewed various means that aid in the differentiation between SPLCs and IPMs explored by histopathologic evaluation and molecular profiling, the latter includes DNA microsatellite analysis, array comparative genomic hybridization, TP53 and oncogenic driver mutation testing and, more recently, with promising effectiveness, next-generation sequencing comprising small- or large-scale multi-gene panels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!