A randomized, placebo-controlled, double-blind clinical study was performed to investigate the dose-dependent response of serum cholesterol after consuming an ultra-heat-treated milk containing a soy protein preparation. Eighty hypercholesterolemic subjects were assigned to one of four study groups receiving 12.5 or 25 g soy protein (active treatment) or casein (placebo) daily over a period of 4 weeks. The trial substances were provided as ready-made, ultra-heated milk preparations. Before and after the treatment, serum concentrations of total, low-density lipoprotein, and high-density lipoprotein cholesterol were determined. Unexpectedly, at the end of the study, low-density lipoprotein cholesterol concentrations were significantly increased compared with baseline in all study groups. The magnitude of this increase (17-19%) was similar in all active and placebo study groups. Soy protein supplements previously shown to be effective in reducing serum cholesterol had in this study no such lipid-lowering effect after ultra heat treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1080/09637480601009059DOI Listing

Publication Analysis

Top Keywords

soy protein
16
study groups
12
ultra heat
8
heat treatment
8
serum cholesterol
8
low-density lipoprotein
8
lipoprotein cholesterol
8
study
6
treatment
4
treatment destroys
4

Similar Publications

Characterization of the ligand-binding properties of odorant-binding protein 38 from when interacting with soybean volatiles.

Front Physiol

January 2025

Plant Protection Institute, Hebei Academy of Agriculture and Forestry Sciences, Key Laboratory of Integrated Pest Management on Crops in Northern Region of North China, Ministry of Agriculture and Rural Affairs, IPM Innovation Center of Hebei Province, International Science and Technology Joint Research Center on IPM of Hebei Province, Baoding, China.

Background: (Fabricius) (Hemiptera: Alydidae) is a major soybean pest throughout East Asia that relies on its advanced olfactory system for the perception of plant-derived volatile compounds and aggregation pheromones for conspecific and host plant localization. Odorant binding proteins (OBPs) facilitate the transport of odorant compounds across the sensillum lymph within the insect olfactory system, enabling their interaction with odorant receptors (ORs).

Methods: Real-time quantitative PCR (qRT-PCR) analyses, fluorescence-based competitive binding assays, and molecular docking analyses were applied to assess the expression and ligand-binding properties of OBP38 from .

View Article and Find Full Text PDF

Tonoplast intrinsic proteins (TIPs) are the channel-forming proteins predominantly found in the tonoplast of plant cells. Despite the identification of TIPs in numerous plant species, very less is known about the precise role of different TIP subgroups. In the present study, two genes belonging to the TIP3 subgroup were studied to understand tissue-specific role and solute transport activity.

View Article and Find Full Text PDF

This paper investigated the effects of heating and pH on the stability of emulsions of non-covalent complexes of gellan gum (GG) and soy protein isolate (SPI). As a result, the GG-SPI complexes stabilized emulsion exhibited a minimum emulsion particle size (945 ± 23 nm), a maximum absolute values of zeta-potential (-32.7 ± 0.

View Article and Find Full Text PDF

Encapsulation technology is a suitable tool to protect probiotics in carrier food products and gastrointestinal tract. In the current investigation, the potential of gum arabic, soy protein isolate and their blend as wall material for the encapsulation of five Lactobacillus spp. viz.

View Article and Find Full Text PDF

Dietary protein has been shown to impact long-term health outcomes differentially depending on its amount and source. It has been suggested that interactions of the gut microbiota with dietary proteins mediate some of the effects of dietary protein on health outcomes. However, it remains unclear what specific host responses drive the health effects of dietary proteins from different plant and animal sources.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!