High-temperature micro liquid chromatography for lipid molecular species analysis with evaporative light scattering detection.

J Chromatogr A

Groupe de Chimie Analytique de Paris-Sud, EA 4041, IFR 141, School of Pharmacy, Univ Paris-Sud, F-92296 Châtenay Malabry, France.

Published: January 2007

The need for a rapid and sensitive chromatographic technique for analyzing lipid molecular species, has led to the development of an high-temperature micro liquid chromatographic system (HTLC) coupled to an evaporative light scattering detector. The increased diffusion coefficients and reduced viscosity at higher temperatures allowed lipids to be analyzed rapidly with solvents differing from those classically used in lipids chemistry. Hypercarb, a reverse phase material, was used for its different properties including heat resistance in high temperature micro HPLC. We have investigated the temperature effect on kinetic performances in HTLC, established pure solvents eluent strength at high temperature and studied different classes of lipids with seven pure solvents. We found that it was possible to use alcohols solvents in the mobile phase to elute lipids without the use of chlorinated solvents. A quick and simple method was developed to analyze a complex lipid simple, ceramide type III and type IV.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chroma.2006.11.067DOI Listing

Publication Analysis

Top Keywords

high-temperature micro
8
micro liquid
8
lipid molecular
8
molecular species
8
evaporative light
8
light scattering
8
high temperature
8
pure solvents
8
solvents
5
liquid chromatography
4

Similar Publications

Implantable systems with chronic stability, high sensing performance, and extensive spatial-temporal resolution are a growing focus for monitoring and treating several diseases such as epilepsy, Parkinson's disease, chronic pain, and cardiac arrhythmias. These systems demand exceptional bendability, scalable size, durable electrode materials, and well-encapsulated metal interconnects. However, existing chronic implantable bioelectronic systems largely rely on materials prone to corrosion in biofluids, such as silicon nanomembranes or metals.

View Article and Find Full Text PDF

Tight oil is a typical unconventional resource, and enhancing its recovery rate remains a challenge in current development efforts. In this study targeting the Daqing Fuyu tight oil reservoir, we combine a high-temperature and high-pressure long core physical simulation apparatus and a high-temperature and high-pressure online Nuclear Magnetic Resonance (NMR) testing system to conduct indoor simulation experiments on CO huff and puff in long cores. The results indicate that in the process, it is primarily the oil from micro-pores that is initially mobilized, but further along mobilization of fluids from a portion of sub-micro-pores and nanopores is enhanced, with an efficiency ranging from 25 to 33 %.

View Article and Find Full Text PDF

Energetic MOF-derived FeC nanoparticles encased in N,S-codoped mesoporous pod-like carbon nanotubes for efficient oxygen reduction reaction.

Nanoscale

January 2025

State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China.

The rational design of advanced oxygen reduction reaction (ORR) catalysts is essential to improve the performance of energy conversion devices. However, it remains a huge challenge to construct hierarchical micro-/meso-/macroporous nanostructures, especially mesoporous transport channels in catalysts, to enhance catalytic capability. Herein, motivated by the characteristics of energetic metal-organic frameworks (EMOFs) that produce an abundance of gases during high-temperature pyrolysis, we prepared a unique tetrazine-based EMOF-derived electrocatalyst (denoted as FeC@NSC-900) consisting of highly dispersed FeC nanoparticles and N,S-codoped mesoporous carbon nanotubes.

View Article and Find Full Text PDF

High temperature QDs organization and re-crystallization in glass supported MgO QDs doped PMMA film.

Sci Rep

January 2025

Condensed Matter Physics & Nanoscience Research Laboratory, Department of Physics and Material Science, Madan Mohan Malaviya University of Technology, Gorakhpur, 273010, U.P, India.

Article Synopsis
  • The study focuses on creating composite films of poly (methylmethacrylate) (PMMA) blended with magnesium oxide quantum dots (MgO QDs) at varying concentrations, and the films were annealed at 130°C for different durations to observe changes in their properties.
  • Analysis revealed that the initial crystallinity of the PMMA films decreased with annealing but slightly improved with the diffusion and coalescence of MgO QDs, leading to the formation of larger clusters that influenced the films' structural properties.
  • The research highlights the significance of temperature and molecular forces in the evolution of the film's morphology and stability, demonstrating unique energy dissipation mechanisms and the complex interplay of inter- and intra
View Article and Find Full Text PDF

Global-optimized energy storage performance in multilayer ferroelectric ceramic capacitors.

Nat Commun

January 2025

Electronic Materials Research Laboratory & Multifunctional Materials and Structures, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, China.

Multilayer ceramic capacitor as a vital core-component for various applications is always in the spotlight. Next-generation electrical and electronic systems elaborate further requirements of multilayer ceramic capacitors in terms of higher energy storage capabilities, better stabilities, environmental-friendly lead-free, etc., where these major obstacles may restrict each other.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!