Recent progress in discerning the molecular events that accompany carcinogenesis has led to development of new cancer therapies directly targeted against the molecular changes of neoplasia. Molecular-targeted therapeutics have shown significant improvements in response rates and decreased toxicity as compared to conventional cytotoxic therapies which lack specificity for tumor cells. In order to fully explore the potential of molecular-targeted therapy, a new set of tools is required to dynamically and quantitatively image and monitor the heterogeneous molecular profiles of tumors in vivo. Currently, molecular markers can only be visualized in vitro using complex immunohistochemical staining protocols. In this chapter, we discuss emerging optical tools to image in vivo a molecular profile of risk-based hallmarks of cancer for selecting and monitoring therapy. We present the combination of optically active, targeted nanoparticles for molecular imaging with advances in minimally invasive optical imaging systems, which can be used to dynamically image both a molecular and phenotypic profile of risk and to monitor changes in this profile during therapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/S0065-230X(06)96011-4 | DOI Listing |
ACS Chem Neurosci
January 2025
Departments of Psychiatry and Neurology, Division of Molecular Therapeutics, New York State Psychiatric Institute, Columbia University Medical Center, New York, New York 10032, United States.
Voluntary movement, motivation, and reinforcement learning depend on the activity of ventral midbrain neurons, which extend axons to release dopamine (DA) in the striatum. These neurons exhibit two patterns of action potential activity: low-frequency tonic activity that is intrinsically generated and superimposed high-frequency phasic bursts that are driven by synaptic inputs. acute striatal brain preparations are widely employed to study the regulation of evoked DA release but exhibit very different DA release kinetics than recordings.
View Article and Find Full Text PDFJ Exp Bot
January 2025
Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Research Center of the Basic Discipline of Cell Biology; Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation; Hebei Key Laboratory of Molecular and Cellular Biology; College of Life Sciences, Hebei Normal University, 050024 Shijiazhuang, China.
A well-constructed pollen wall is essential for pollen fertility, which relies on the contribution of tapetum. Our results demonstrate an essential role of the tapetum-expressed protein phosphatase 2A (PP2A) B'α and B'β in pollen wall formation. The b'aβ double mutant pollen grains harbored sticky remnants and tectum breakages, resulting in failed release.
View Article and Find Full Text PDFExpert Opin Biol Ther
January 2025
OU Stephenson Cancer Center, Oklahoma City.
Introduction: Antibody-drug conjugates (ADCs) are a rapidly evolving class of anti-cancer drugs with a significant impact on management of hematological malignancies including diffuse large B-cell lymphoma (DLBCL). ADCs combine a cytotoxic drug (a.k.
View Article and Find Full Text PDFNeurol Sci
January 2025
Epilepsy Center, Department of Neurology, West China Hospital of Sichuan University, Chengdu, China.
This study intents to detect graphical network features associated with seizure relapse following antiseizure medication (ASM) withdrawal. Twenty-four patients remaining seizure-free (SF-group) and 22 experiencing seizure relapse (SR-group) following ASM withdrawal as well as 46 matched healthy participants (Control) were included. Individualized morphological similarity network was constructed using T1-weighted images, and graphic metrics were compared between groups.
View Article and Find Full Text PDFClin Rheumatol
January 2025
Biochemistry Department, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
The current study was deployed to evaluate the role of metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) and miR-155, along with the inflammatory markers, TNFα and IL-6, and the adhesion molecule, cluster of differentiation 106 (CD106), in Behçet's disease (BD) pathogenesis. The study also assessed MALAT1/miR-155 as promising diagnostic and prognostic biomarkers for BD. The current retrospective case-control study included 74 Egyptian BD patients and 50 age and sex-matched controls.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!