Identification and distribution of chondroitin sulfate in the three electric organs of the electric eel, Electrophorus electricus (L.).

Comp Biochem Physiol B Biochem Mol Biol

Laboratório de Tecido Conjuntivo, Hospital Universitário Clementino Fraga Filho, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, 21941-590, Rio de Janeiro, Brazil.

Published: February 2007

The electrogenic tissue of the electric eel Electrophorus electricus (L.) is distributed in three well-defined electric organs, the Main electric organ, Sach's organ and Hunter's organ. Sulfated glycosaminoglycan (GAG) composition was characterized in the three electric organs of the electric eel. Sulfated GAGs were analyzed in the electric organs using metachromatic staining, biochemical analysis including electrophoresis before and after specific enzymatic or chemical degradations, and immunostaining with an antibody against chondroitin sulfate (CS). Our results showed in the three electric organs that CS was the main sulfated GAG species detected, accompanied by small and diminutive amounts of CS/dermatan sulfate hybrid chains and heparan sulfate (HS), respectively. However, HS was not detected in the Sach's organ. CS was predominantly detected in the innervated membrane face of the electroplaques in the three electric organs. Our findings extend previous observations on the GAG composition in the electric organs of E. electricus and provide new information regarding the tissue distribution and location of CS.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cbpb.2006.10.107DOI Listing

Publication Analysis

Top Keywords

electric organs
28
three electric
16
electric eel
12
electric
11
chondroitin sulfate
8
sulfate three
8
organs electric
8
eel electrophorus
8
electrophorus electricus
8
organs main
8

Similar Publications

Multiomics analysis elucidated the role of inflammatory response and bile acid metabolism disturbance in electric shock-induced liver injury in mice.

Chin J Traumatol

January 2025

Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Army Medical University, Chongqing, 400038, China; State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400038, China. Electronic address:

Purpose: Organ damage caused by electric shock has attracted great attention. Some animal investigations and clinical cases have suggested that electric shock can induce liver injury. This study aimed to investigate the potential mechanism of liver injury induced by electric shock.

View Article and Find Full Text PDF

Although leukemia in the Japanese atomic bomb survivor data has long exhibited upward curvature, until recently this appeared not to be the case for solid cancer. It has been suggested that the recently observed upward curvature in the dose response for the Japanese atomic bomb survivor solid cancer mortality data may be accounted for by flattening of the dose response in the moderate dose range (0.3-0.

View Article and Find Full Text PDF

Development of Peptide Mimics of the Human Acetylcholine Receptor Main Immunogenic Region for Treating Myasthenia Gravis.

Int J Mol Sci

December 2024

Department of Neurology, Davis School of Medicine, University of California, 1515 Newton Court, Davis, CA 95618, USA.

We have designed and produced 39 amino acid peptide mimics of the and human acetylcholine receptors' (AChRs) main immunogenic regions (MIRs). These conformationally sensitive regions consist of three non-contiguous segments of the AChR α-subunits and are the target of 50-70% of the anti-AChR autoantibodies (Abs) in human myasthenic serum and in the serum of rats with a model of that disease, experimental autoimmune myasthenia gravis (EAMG), induced by immunizing the rats with the electric organ AChR. These MIR segments covalently joined together bind a significant fraction of the monoclonal antibodies (mAbs) raised in rats against electric organ AChR.

View Article and Find Full Text PDF

This study aims to explore the effect of pulsed electric field (PEF) treatment as a method very likely to result in reversible electroporation of Georgi underground organs, resulting in increased mass transfer and secondary metabolites leakage. PEF treatment with previously established empirically tailored parameters [E = 0.3 kV/cm (U = 3 kV, d = 10 cm), t = 50 µs, N = 33 f = 1 Hz] was applied 1-3 times to roots submerged in four different Natural Deep Eutectic Solvents (NADES) media (1-choline chloride/xylose (1:2) + 30% water, 2-choline chloride/glucose (1:2) + 30% water, 3-choline chloride/ethylene glycol (1:2), and 4-tap water (EC = 0.

View Article and Find Full Text PDF

Epithelial tissues in vitro undergo dynamic changes while differentiating heterogeneously on the culture substrate. This gives rise to diverse cellular arrangements which are undistinguished by conventional analysis approaches, such as transepithelial electrical resistance measurement or permeability assays. In this context, solid substrate-based systems with integrated electrodes and electrochemical impedance monitoring capability can address the limited spatiotemporal resolution of traditional porous membrane-based methods.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!