Mutagenic potency of food-derived heterocyclic amines.

Mutat Res

Chemistry, Materials and Life Sciences Directorate, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94551, USA.

Published: March 2007

The understanding of mutagenic potency has been primarily approached using "quantitative structure-activity relationships" (QSAR). Often this method allows the prediction of mutagenic potency of the compound based on its structure. But it does not give the underlying reason why the mutagenic activities differ. We have taken a set of heterocyclic amine structures and used molecular dynamic calculations to dock these molecules into the active site of a computational model of the cytochrome P4501A2 enzyme. The calculated binding strength using Boltzman distribution constants was then compared to the QSAR value (HF/6-31G* optimized structures) and the Ames/Salmonella mutagenic potency. Further understanding will only come from knowing the complete set of mutagenic determinants. These include the nitrenium ion half-life, DNA adduct half-life, efficiency of repair of the adduct, and ultimately fixation of the mutation through cellular processes. For two isomers, PhIP and 3-Me-PhIP, we showed that for the 100-fold difference in the mutagenic potency a 5-fold difference can be accounted for by differences in the P450 oxidation. The other factor of 20 is not clearly understood but is downstream from the oxidation step. The application of QSAR (chemical characteristics) to biological principles related to mutagenesis is explored in this report.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mrfmmm.2006.11.010DOI Listing

Publication Analysis

Top Keywords

mutagenic potency
20
mutagenic
7
potency food-derived
4
food-derived heterocyclic
4
heterocyclic amines
4
amines understanding
4
understanding mutagenic
4
potency
4
potency approached
4
approached "quantitative
4

Similar Publications

The kinetically-derived maximal dose (KMD) is defined as the maximum external dose at which kinetics are unchanged relative to lower doses, e.g., doses at which kinetic processes are not saturated.

View Article and Find Full Text PDF

Several potent carcinogenic nitrosamines, including N-nitrosodiethylamine (NDEA) and N-nitrosodimethylamine (NDMA), induce micronuclei in the micronucleated hepatocyte (MNHEP) assay but not in the micronucleated reticulocyte (MNRET) assay. However, the MNHEP assay is not as frequently used as the MNRET assay for evaluating in vivo genotoxicity. The present study evaluated MN formation in the liver of Big Blue transgenic rats exposed to four small-molecule nitrosamines, NDMA, N-nitrosodiisopropylamine (NDIPA), N-nitrosoethylisoporpylamine (NEIPA), and N-nitrosomethylphenylamine (NMPA), using a repeat-dose protocol typically used for in vivo mutagenicity studies.

View Article and Find Full Text PDF
Article Synopsis
  • Oxidative stress and inflammation are key issues in immune-compromised diseases and cancer treatments, prompting a study on the immune-boosting effects of Bryonia alba (BA) in mice with induced immune deficiency.
  • The research involved treating BALB/c mice with various potencies of BA after cyclophosphamide administration, resulting in significant improvements in immune parameters like RBC and WBC levels, and increased expression of important immune cytokines.
  • Histopathology showed that BA-treated mice maintained healthy spleen structures compared to those damaged by cyclophosphamide, suggesting BA's potential as an effective immunostimulant during chemotherapy, but more studies are needed on its effects against immune-compromised infections.
View Article and Find Full Text PDF
Article Synopsis
  • The study investigates genomic changes in a key yeast used in biotechnology under spontaneous and induced mutagenic conditions.
  • Findings highlight a mutation rate of about 4 × 10 events per base pair per cell division, with specific patterns like C-to-T transitions as the most common spontaneous mutations.
  • Exposure to mutagens like UV light and Zeocin significantly increases mutation rates, with Zeocin leading to unique substitution patterns and a higher frequency of insertions and deletions.
View Article and Find Full Text PDF

Exposure to oxygenated polycyclic aromatic hydrocarbons and endocrine dysfunction: Multi-level study based on hormone receptor responses.

J Hazard Mater

December 2024

Shanxi Key Laboratory of Coal-based Emerging Pollutant Identification and Risk Control, Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan, Shanxi 030006, PR China; Department of Resources and Environmental Engineering, Shanxi Institute of Energy, Taiyuan, Shanxi 030600, PR China.

Oxygenated polycyclic aromatic hydrocarbons (OPAHs) are a class of emerging environmental contaminants that exhibit high toxicity compared to parent PAHs. In addition to carcinogenic, teratogenic and mutagenic effects, recent studies show their potential to cause endocrine disruption, but the reports are controversial. In this study, we employed hormone receptors (ERα/AR/GRα/TRβ)-mediated dual luciferase reporter gene assay and molecular docking, and found that five typical OPAHs exhibited agonistic activity towards hormone receptors, and hydrogen bonding and hydrophobic interactions were the primary binding forces involved in OPAHs-receptor interactions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!