A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Breast cancer bone metastasis and current small therapeutics. | LitMetric

Breast cancer bone metastasis and current small therapeutics.

Cancer Metastasis Rev

Endocrine Research Unit, Mayo Clinic College of Medicine, Rochester, MN 55901, USA.

Published: December 2006

Patients with advanced breast cancer frequently develop metastasis to bone. Bone metastasis results in intractable pain and a high risk of fractures due to tumor-driven bone loss (osteolysis), which is caused by increased osteoclast activity. Osteolysis releases bone-bound growth factors including transforming growth factor beta (TGF-beta). The widely accepted model of osteolytic bone metastasis in breast cancer is based on the hypothesis that the TGF-beta released during osteolytic lesion development stimulates tumor cell parathyroid hormone related protein (PTHrP), causing stromal cells to secrete receptor activator of NFkappaB ligand (RANKL), thus increasing osteoclast differentiation. Elevated osteoclast numbers results in increased bone resorption, leading to more TGF-beta being released from bone. This interaction between tumor cells and the bone microenvironment results in a vicious cycle of bone destruction and tumor growth. Bisphosphonates are commonly prescribed small molecule therapeutics that target tumor-driven osteoclastic activity in osteolytic breast cancers. In addition to bisphosphonate therapies, steroidal and non-steroidal antiestrogen and adjuvant therapies with aromatase inhibitors are additional small molecule therapies that may add to the arsenal for treatment of osteolytic breast cancer. This review focuses on a brief discussion of tumor-driven osteolysis and the effects of small molecule therapies in reducing osteolytic tumor progression.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10555-006-9035-xDOI Listing

Publication Analysis

Top Keywords

breast cancer
16
bone metastasis
12
small molecule
12
bone
9
tgf-beta released
8
osteolytic breast
8
molecule therapies
8
breast
5
osteolytic
5
cancer bone
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!