Revisiting the molecular evolutionary history of Shigella spp.

J Mol Evol

State Key Laboratory for Molecular Virology and Genetic Engineering, 6 Rongjing East Street, BDA Beijing 100176, PR China.

Published: January 2007

The theory that Shigella is derived from multiple independent origins of Escherichia coli (Pupo et al. 2000) has been challenged by recent findings that the virulence plasmids (VPs) and the chromosomes share a similar evolutionary history (Escobar-Paramo et al. 2003), which suggests that an ancestral VP entered an E. coli strain only once, which gave rise to Shigella spp. In an attempt to resolve these conflicting theories, we constructed three phylogenetic trees in this study: a robust chromosomal tree using 23 housekeeping genes from 46 strains of Shigella and enteroinvasive E. coli (EIEC), a chromosomal tree using 4 housekeeping genes from 19 EcoR strains and 46 Shigella/EIEC strains, and a VP tree using 5 genes outside of the VP cell-entry region from 38 Shigella/EIEC strains. Both chromosomal trees group Shigella into three main clusters and five outliers, and strongly suggest that Shigella has multiple origins within E. coli. Most strikingly, the VP tree shows that the VPs from two main Shigella clusters, C1 and C2, are more closely related, which contradicts the chromosomal trees that place C2 and C3 next to each other but C1 at a distance. Additionally, we have identified a complete tra operon of the F-plasmid in the genome sequence of an EIEC strain and found that two other EIEC strains are also likely to possess a complete tra operon. All lines of evidence support an alternative multiorigin theory that transferable diverse ancestral VPs entered diverse origins of E. coli multiple times during a prolonged period of time, resulting in Shigella species with diverse genomes but similar pathogenic properties.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00239-006-0052-8DOI Listing

Publication Analysis

Top Keywords

evolutionary history
8
shigella
8
shigella spp
8
chromosomal tree
8
tree housekeeping
8
housekeeping genes
8
shigella/eiec strains
8
chromosomal trees
8
origins coli
8
complete tra
8

Similar Publications

Human tumors are diverse in their natural history and response to treatment, which in part results from genetic and transcriptomic heterogeneity. In clinical practice, single-site needle biopsies are used to sample this diversity, but cancer biomarkers may be confounded by spatiogenomic heterogeneity within individual tumors. Here we investigate clonally expressed genes as a solution to the sampling bias problem by analyzing multiregion whole-exome and RNA sequencing data for 450 tumor regions from 184 patients with lung adenocarcinoma in the TRACERx study.

View Article and Find Full Text PDF

The genetic demographic history of the last hunter-gatherer population of the Himalayas.

Sci Rep

January 2025

Department of Medicine and Life Sciences, Institut de Biologia Evolutiva (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain.

Nepal, largely covered by the Himalayan mountains, hosts indigenous populations with distinct linguistic, cultural, and genetic characteristics. Among these populations, the Raute, Nepal's last nomadic hunter-gatherers, offer a unique insight into the genetic and demographic history of Himalayan foragers. Despite strong cultural connections to other regional foragers, the genetic history of this population remains understudied.

View Article and Find Full Text PDF

Lorchels, also known as false morels (Gyromitra sensu lato), are iconic due to their brain-shaped mushrooms and production of gyromitrin, a deadly mycotoxin. Molecular phylogenetic studies have hitherto failed to resolve deep-branching relationships in the lorchel family, Discinaceae, hampering our ability to settle longstanding taxonomic debates and to reconstruct the evolution of toxin production. We generated 75 draft genomes from cultures and ascomata (some collected as early as 1960), conducted phylogenomic analyses using 1542 single-copy orthologs to infer the early evolutionary history of lorchels, and identified genomic signatures of trophic mode and mating-type loci to better understand lorchel ecology and reproductive biology.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!