Most contacts with food protein and microbiota antigens occur at the level of the gut mucosa. In animal models where this natural stimulation is absent, such as germ-free and antigen-free mice, the gut-associated lymphoid tissue (GALT) and systemic immunological activities are underdeveloped. We have shown that food proteins play a critical role in the full development of the immune system. C57BL/6 mice weaned to a diet in which intact proteins are replaced by equivalent amounts of amino acids (Aa diet) have a poorly developed GALT as well as low levels of serum immunoglobulins (total Ig, IgG, and IgA, but not IgM). In the present study, we evaluated whether the introduction of a protein-containing diet in 10 adult Aa-fed C57BL/6 mice could restore their immunoglobulin levels and whether this recovery was dependent on the amount of dietary protein. After the introduction of a casein-containing diet, Aa-fed mice presented a fast recovery (after 7 days) of secretory IgA (from 0.33 to 0.75 mg/mL, while in casein-fed mice this value was 0.81 mg/mL) and serum immunoglobulin levels (from 5.39 to 10.25 mg/mL of total Ig). Five percent dietary casein was enough to promote the restoration of secretory IgA and serum immunoglobulin levels to a normal range after 30 days feeding casein diet (as in casein-fed mice--15% by weight of diet). These data suggest that the defect detected in the immunoglobulin levels was a reversible result of the absence of food proteins as an antigenic stimulus. They also indicate that the deleterious consequences of malnutrition at an early age for some immune functions may be restored by therapeutic intervention later in life.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1590/s0100-879x2006001200009 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!