Infections with the malaria parasite Plasmodium falciparum result in more than 1 million deaths each year worldwide. Deciphering the evolutionary history and genetic variation of P. falciparum is critical for understanding the evolution of drug resistance, identifying potential vaccine candidates and appreciating the effect of parasite variation on prevalence and severity of malaria in humans. Most studies of natural variation in P. falciparum have been either in depth over small genomic regions (up to the size of a small chromosome) or genome wide but only at low resolution. In an effort to complement these studies with genome-wide data, we undertook shotgun sequencing of a Ghanaian clinical isolate (with fivefold coverage), the IT laboratory isolate (with onefold coverage) and the chimpanzee parasite P. reichenowi (with twofold coverage). We compared these sequences with the fully sequenced P. falciparum 3D7 isolate genome. We describe the most salient features of P. falciparum polymorphism and adaptive evolution with relation to gene function, transcript and protein expression and cellular localization. This analysis uncovers the primary evolutionary changes that have occurred since the P. falciparum-P. reichenowi speciation and changes that are occurring within P. falciparum.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2663918 | PMC |
http://dx.doi.org/10.1038/ng1931 | DOI Listing |
Biochem Genet
January 2025
Key Laboratory of Parasite and Vector Biology of the Chinese Ministry of Health, Chinese Center for Disease Control and Prevention, WHO Collaborating Centre for Tropical Diseases, National Institute of Parasitic Diseases, Shanghai, 200025, People's Republic of China.
Drug resistance resulting from mutations in Plasmodium falciparum, that caused the failure of previously effective malaria drugs, has continued to threaten the global malaria elimination goal. This study describes the profiles of P. falciparum chloroquine resistance transporter (Pfcrt) and P.
View Article and Find Full Text PDFParasite
January 2025
Center of Excellence in Vector Biology and Vector-Borne Disease, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand.
Culicoides biting midges (Diptera: Ceratopogonidae) have been reported as potential vectors for haemoparasites. Information about host-vector-parasite specificity is required to confirm their status. Here, molecular detection of haemosporidians, Leishmania, trypanosomatids, and filarial nematodes in biting midges was conducted to understand their potential role as vectors, and their host preference was determined.
View Article and Find Full Text PDFSci Rep
January 2025
Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
The evolution of genetic diversity and population structure of Plasmodium vivax as malaria elimination approaches remains unclear. This study analyzed the genetic variation and molecular epidemiology of P. vivax from Yala Province in southern Thailand, an area in the pre-elimination phase.
View Article and Find Full Text PDFTrends Parasitol
January 2025
Texas Children's Hospital Center for Vaccine Development, Department of Pediatrics and Molecular Virology and Microbiology, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX 77030, USA; Department of Biology, Baylor University, Waco, TX 76706, USA; James A. Baker III Institute of Public Policy, Rice University, Houston, TX 77005, USA; Hagler Institute for Advanced Study and Scowcroft Institute of International Affairs, The Bush School of Government & Public Service, Texas A&M University, College Station, TX 77843, USA. Electronic address:
Neglected tropical diseases are accelerating because of climate change and urbanization to create new clusters of vast urban areas beset by poverty and environmental degradation. These hot and contaminated megacities could enable the rise of parasitic and other tropical infections. A new generation of antiparasitic vaccines will be needed.
View Article and Find Full Text PDFProc Biol Sci
January 2025
Department of Biodiversity, Ecology and Evolution, Complutense University of Madrid, Madrid, Spain.
Parasites have their strongest impact on fitness when host defences deplete resources needed for other critical life-history stages, such as development, breeding or migration. Among birds, one greatly neglected stage that could be altered by parasites is post-juvenile moult (PJM), through which yearling juvenile birds replace their fast-generated, low-quality juvenile feathers with adult-like feathers after leaving the nest. The earlier the birds complete PJM, the earlier they will be prepared to withstand forthcoming challenges, such as adverse winter conditions or migration.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!