Objectives: Exposure to radon and radon decay products represents one of the greatest risks of ionizing radiation from natural sources in some residential and working areas. Recently increasing attention has been paid to accurate estimations of this health risk by using various models.
Methods: In the presented study, a bystander model was used to predict biological effects of radon products on lung tissue target cells. The model considers radiation response as a superposition of the direct alpha particles hit effect and the bystander (cells communication) effect. Energy deposition in the lung tissue and in the air gap was calculated using the Bethe-Bloch equation. The exponential distribution of radon progenies in the mucous layer of smokers and non-smokers was evaluated.
Results: The excess relative risk value of lung cancer occurrence per unit exposure obtained in our study was ERR/WLM=0.0047 for smokers and ERR/WLM=0.0171 (taking into account the environment in radioactive ore mines) for non-smokers. Other published results give the average excess relative risk values per unit exposure in the dwellings for smokers ERR=0.050 per 100 Bq.m(-3) and for non-smokers ERR=0.198 per 100 B.qm(-3). Results presented in this study are in good agreement with the published epidemiological data on lung cancer incidence for mines and residential areas.
Conclusions: The bystander model is suitable for radon risk prediction in dwellings and at workplaces (residential and working areas).
Download full-text PDF |
Source |
---|
Radiat Environ Biophys
December 2024
Radiation Protection Bureau, Health Canada, 775 Brookfield Road, Ottawa, ON, K1A 1C1, Canada.
The Canadian Guidelines for the Management of Naturally Occurring Radioactive Materials (NORM) have been developed to manage radiation doses received in workplaces involving NORM, such as mineral extraction and processing, oil and gas production, metal recycling or water treatment facilities. This management strategy works well for most naturally occurring radioactive materials in workplaces, with the exception of radon. Radon is a naturally occurring radioactive gas generated by the decay of uranium-bearing minerals in rocks and soils.
View Article and Find Full Text PDFBiomarkers
January 2025
Department of General Biology and Genomics, Institute of Cell Biology and Biotechnology, L.N. Gumilyov Eurasian National University, Astana 010008, Kazakhstan.
Background: Radon, a radioactive gas, is a significant risk factor for lung cancer, especially in non-smokers. This study examines the expression of exosomal microRNAs (miRNAs) as potential biomarkers for radon-induced effects.
Methods: A total of 109 participants from high- and low-radon areas in Kazakhstan were included.
Proc Natl Acad Sci U S A
January 2025
Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA 02114.
Radon, a common radioactive indoor air pollutant, is the second leading cause of lung cancer in the United States. Knowledge about its distribution is essential for risk assessment and designing efficient protective regulations. However, the three current radon maps for the United States are unable to provide the up-to-date, high-resolution, and time-varying radon concentrations.
View Article and Find Full Text PDFJAMA Netw Open
January 2025
Department of Obstetrics and Gynecology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York.
Importance: Understanding environmental risk factors for gestational diabetes (GD) is crucial for developing preventive strategies and improving pregnancy outcomes.
Objective: To examine the association of county-level radon exposure with GD risk in pregnant individuals.
Design, Setting, And Participants: This multicenter, population-based cohort study used data from the Nulliparous Pregnancy Outcomes Study: Monitoring Mothers-to-Be (nuMoM2b) cohort, which recruited nulliparous pregnant participants from 8 US clinical centers between October 2010 and September 2013.
Cancers (Basel)
December 2024
Institute of Radiation Emergency Medicine, Hirosaki University, Hirosaki 036-8564, Aomori, Japan.
Indoor radon is a significant risk factor for the development of LC. This study aimed to identify potential biomarkers for LC risk in high background radiation areas using a metabolomics approach (UHPLC-HRMS). Based on the indoor radon activity concentration measurements in the Kong Khaek subdistrict, serum samples were collected from 45 nonsmoker or former smoker participants, comprising 15 LC patients and 30 matched healthy controls (low- and high-radon groups, respectively).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!