Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The nucleus in eukaryotic cells can move within the cytoplasm, and its position is crucial for many cellular events, including migration and differentiation. Nuclear anchorage and movement can be achieved through association of outer nuclear membrane (ONM) proteins with the three cytoskeletal systems. Two decades ago studies described C. elegans mutants with defects in such events, but only recently has it been shown that the strategies for nuclear positioning are indeed conserved in C. elegans, Drosophila, mammals and potentially all eukaryotes. The integral ONM proteins implicated in these processes thus far all contain a conserved Klarsicht/ANC-1/Syne homology (KASH) domain at their C-terminus that can associate with Sad1p/UNC-84 (SUN)-domain proteins of the inner nuclear membrane within the periplasmic space of the nuclear envelope (NE). The complex thus formed is responsible not only for association with cytoplasmic elements but also for the integrity of the NE itself.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1242/jcs.03295 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!