The imprinted expression of the IGF2 and H19 genes is controlled by the Imprinting Centre 1 (IC1) at chromosome 11p15.5. This is a methylation-sensitive chromatin insulator that works by binding the zinc-finger protein CTCF in a parent-specific manner. Microdeletions abolishing some of the CTCF target sites (CTSs) of IC1 have been associated with the Beckwith-Wiedemann syndrome (BWS). However, the link between these mutations and the molecular and clinical phenotypes was debated. We have identified two novel families with IC1 deletions, in which individuals with the clinical features of the BWS are present in multiple generations. By analysing the methylation pattern at the IGF2-H19 locus together with the clinical phenotypes in the individuals with maternal and those with paternal transmission of five different deletions, we demonstrate that maternal transmission of 1.4-1.8 kb deletions in the IC1 region co-segregates with the hypermethylation of the residual CTSs and BWS phenotype with complete penetrance, whereas normal phenotype is observed upon paternal transmission. Although gene expression could not be assayed in all cases, the methylation detected at the IGF2 DMR2 and H19 promoter suggests that IC1 hypermethylation is consistently associated with biallelic activation of IGF2 and biallelic silencing of H19. Comparison of these deletions with a 2.2 kb one previously reported by another group indicates that the spacing of the CTSs on the deleted allele is critical for the gain of the abnormal methylation and penetrance of the clinical phenotype. Furthermore, we observe that the hypermethylation resulting from the deletions is always mosaic, suggesting that the epigenetic defect at the IGF2-H19 locus is established post-zygotically and may cause body asymmetry and heterogeneity of the clinical phenotype. Finally, the IC1 microdeletions are associated with a high incidence of Wilms' tumour, making their molecular diagnosis particularly important for genetic counselling and tumour surveillance at follow-up.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/hmg/ddl448 | DOI Listing |
JCEM Case Rep
January 2025
Department of Endocrinology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA.
A male neonate exhibited hallmark features of Beckwith-Wiedemann syndrome (BWS) including large for gestational age, macroglossia, multiple ear pits, and umbilical hernia. He had neonatal hypoglycemia, requiring a glucose infusion rate of 9.7 mg/kg/min.
View Article and Find Full Text PDFJ Craniofac Surg
January 2025
Division of Plastic Surgery, Department of Surgery, Dalhousie University.
Introduction: Macroglossia is a frequent clinical feature of Beckwith-Wiedemann syndrome (BWS), a congenital overgrowth disorder. Macroglossia can lead to abnormal breathing, feeding, speech, and dentoskeletal development. Partial glossectomy is a common intervention aimed at reducing these abnormalities.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
January 2025
Department of Clinical and Biomedical Science, University of Exeter Medical School, Exeter, United Kingdom.
Introduction: Congenital Hyperinsulinism (CHI) has not been previously studied in Ukraine. We therefore aimed to elucidate the genetics, clinical phenotype, histological subtype, treatment and long-term outcomes of Ukrainian patients with CHI.
Methods: Forty-one patients with CHI were recruited to the Ukrainian national registry between the years 2014-2023.
Pediatr Transplant
February 2025
Thomas Jefferson University Hospital, Philadelphia, Pennsylvania, USA.
Background: Liver transplantation for unresectable, benign hepatic lesions is rare. Hepatic mesenchymal hamartomas (HMH) are benign, cystic tumors that arise mostly in pediatric populations and can cause compressive symptoms. HMH is rarely associated with placental mesenchymal dysplasia (PMD) and Beckwith-Wiedemann syndrome (BWS).
View Article and Find Full Text PDFRadiographics
January 2025
From the Department of Radiology, Mayo Clinic, 200 1st Ave SE, Rochester, MN 55905 (A.B.K.); Department of Radiology, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pa (M.R.A.); Department of Radiology and Imaging Sciences, Emory University and Children's Healthcare of Atlanta, Atlanta, Ga (G.K., A.A.); Department of Radiology, Cincinnati Children's Hospital, Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, Ohio (C.E.M., A.J.T.); Department of Radiology, Keck School of Medicine and Children's Hospital Los Angeles, Los Angeles, Calif (H.N.N.); Department of Radiology, Nationwide Children's Hospital, Columbus, Ohio (M.A.R.); Department of Medical Imaging, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Ill (E.R.); Department of Radiology, UT Southwestern Medical Center, Dallas, Tex (G.R.S.); Department of Radiology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pa (J.H.S.); Department of Radiology, Stanford University School of Medicine, Stanford, Calif (A.B.S.); and Department of Radiology, Children's Hospital Colorado, Aurora, Colo (E.R.T.).
Liver masses in children with underlying systemic disease or a predisposing syndrome can be benign or malignant, ranging from focal fat to hepatocellular carcinoma (HCC). Knowledge of the underlying condition, the pathophysiologic effect on the liver, and the development of liver disease and specific liver lesions allows radiologists to guide imaging with regard to modality and frequency and give recommendations for biopsy when appropriate. In some predisposition disorders, such as Beckwith Wiedemann spectrum, familial adenomatous polyposis syndrome, and tuberous sclerosis complex, established guidelines for imaging screening exist.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!