Mg-chelatase catalyzes the insertion of Mg2+ into protoporphyrin IX at the first committed step of the chlorophyll biosynthetic pathway. It consists of three subunits: I, D, and H. The I subunit belongs to the AAA protein superfamily (ATPases associated with various cellular activities) that is known to form hexameric ring structures in an ATP-dependant fashion. Dominant mutations in the I subunit revealed that it functions in a cooperative manner. We demonstrated that the D subunit forms ATP-independent oligomeric structures and should also be classified as an AAA protein. Furthermore, we addressed the question of cooperativity of the D subunit with barley (Hordeum vulgare) mutant analyses. The recessive behavior in vivo was explained by the absence of mutant proteins in the barley cell. Analogous mutations in Rhodobacter capsulatus and the resulting D proteins were studied in vitro. Mixtures of wild-type and mutant R. capsulatus D subunits showed a lower activity compared with wild-type subunits alone. Thus, the mutant D subunits displayed dominant behavior in vitro, revealing cooperativity between the D subunits in the oligomeric state. We propose a model where the D oligomer forms a platform for the stepwise assembly of the I subunits. The cooperative behavior suggests that the D oligomer takes an active part in the conformational dynamics between the subunits of the enzyme.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1785401 | PMC |
http://dx.doi.org/10.1105/tpc.106.042374 | DOI Listing |
Methods Mol Biol
January 2025
Estrella Mountain Community College, Phoenix, AZ, USA.
Vacuole fusion is driven by SNARE proteins that require activation-or priming-by the AAA+ protein Sec18 (NSF) before they can bring membranes together and trigger the merger of two bilayers into a continuous membrane. Sec18 resides on vacuoles prior to engaging inactive cis-SNARE complexes through its interaction with the regulatory lipid phosphatidic acid (PA). Binding PA causes Sec18 to undergo large conformational changes that keeps it bound to the membrane, thus precluding its interactions with SNAREs.
View Article and Find Full Text PDFJ Biochem Mol Toxicol
January 2025
Department of Cardiothoracic Surgery, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou City, Hubei Province, China.
Abdominal aortic aneurysm (AAA) is a severe cardiovascular disease (CVD) that is partly attributable to endothelial dysfunction, inflammatory response, and angiogenesis. G protein-coupled receptor 4 (GPR4), a proton-sensitive G protein-coupled receptor that is abundantly expressed in vascular endothelial cells, has been associated with numerous physiological functions. Nevertheless, its potential involvement in the development of AAA remains unexplored.
View Article and Find Full Text PDFEur J Vasc Endovasc Surg
January 2025
Department of Vascular Surgery, St. Olavs Hospital, Trondheim, Norway; Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, NTNU-Norwegian University of Science and Technology, Trondheim, Norway.
Objective: Inflammation seems to be crucial in the pathogenesis of abdominal aortic aneurysm (AAA). Previous research links inflammatory biomarkers, such as high sensitivity C-reactive protein (HS-CRP), to AAA. Few studies, however, have used a prospective design.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland.
Aggressive variant prostate cancer (AVPC) is characterized by a molecular signature involving combined defects in , , and/or (AVPC-TSGs), identifiable through immunohistochemistry or genomic analysis. The reported prevalence of AVPC-TSG alterations varies widely, reflecting differences in assay sensitivity, treatment pressure, and disease stage evolution. Although robust clinical evidence is still emerging, the study of AVPC-TSG alterations in prostate cancer (PCa) is promising.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Biology, Texas Southern University, Houston, TX 77004, USA.
Previous data show that the knockdown of the gene in the MDA-MB-231 cell line leads to the downregulation of gene expression. In addition, and genes are co-expressed and dysregulated in some of the same triple negative breast cancer patient samples. We propose that the co-expression of the two genes is attributed to the MYBL1 transcription factor regulation of the gene.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!