Bradykinin activates calcium-dependent potassium channels in cultured human airway smooth muscle cells.

Am J Physiol Lung Cell Mol Physiol

Division of Therapeutics and Molecular Medicine, University Hospital of Nottingham, Nottingham NG7 2UH, UK.

Published: April 2007

Bradykinin (BK) is an inflammatory mediator that can cause bronchoconstriction. In this study, we investigated the membrane currents induced by BK in cultured human airway smooth muscle (ASM) cells. Depolarization of the cells induced outward currents, which were inhibited by tetraethylammonium (TEA) in a concentration-dependent manner with an IC50 of 0.33 microM. The currents were increased by elevating intracellular free Ca2+ concentration, suggesting they are calcium-activated potassium channels [I(K(Ca))]. Preexposure to inhibitor of I(K(Ca)) of large conductance (BKCa), iberiotoxin, and small conductance (SKCa), apamin, inhibited the increase of outward current induced by BK. The relative contribution of BKCa was greatest in early passage cells. Both nickel and SKF-96365 (10 microM) inhibited the increase of the I(K(Ca)) induced by BK; however, the l-type Ca2+ channel blocker, nifedipine, had no effect. Activation of the BK-induced current was inhibited by heparin, indicating dependence on intact inositol 1,4,5-triphosphate (IP3)-sensitive intracellular Ca2+ stores. BK also increased inositol phosphate accumulation and induced a transient Ca2+-activated chloride current (CACC) and a sustained nonselective cation current (I(CAT)). In summary, BK activates BKCa, SKCa, CACC, and I(CAT) via IP3-sensitive stores in human ASM.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajplung.00461.2005DOI Listing

Publication Analysis

Top Keywords

potassium channels
8
cultured human
8
human airway
8
airway smooth
8
smooth muscle
8
inhibited increase
8
induced
5
bradykinin activates
4
activates calcium-dependent
4
calcium-dependent potassium
4

Similar Publications

Inhibition of Kv1.3 channel restrains macrophage M2 polarization and ameliorates renal fibrosis via regulating STAT6 phosphorylation.

Pharmacol Res

January 2025

NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences,Southern Medical University, Guangzhou 510515, China; Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Guangzhou 510515, China. Electronic address:

Macrophages play crucial roles in regulating both homeostatic and inflammatory responses, with classical activated (M1) and alternatively activated (M2) subsets defined by the surrounding micro-environment. Renal fibrosis, developed from persistent inflammation, is worsened by M2 macrophages, yet the precise mechanisms underlying macrophage M2 polarization remain unclear. In this study, we investigated the role of Kv1.

View Article and Find Full Text PDF

Patients suffering epilepsy caused by the gain-of-function mutants of the hKCNT1 potassium channels are drug refractory. In this study, we cloned a novel human KCNT1B channel isoform using the brain cDNA library and conducted patch-clamp and molecular docking analyses to characterize the pharmacological properties of the hKCNT1B channel using thirteen drugs. Among cinchona alkaloids, we found that hydroquinine exerted the strongest blocking effect on the hKCNT1B channel, especially the F313L mutant.

View Article and Find Full Text PDF

The L-type Ca channel (Ca1.2) is essential for cardiac excitation-contraction coupling. To contribute to the inward Ca flux that drives Ca-induced-Ca-release, Ca1.

View Article and Find Full Text PDF

This study combines experimental techniques and mathematical modeling to investigate the dynamics of C. elegans body-wall muscle cells. Specifically, by conducting voltage clamp and mutant experiments, we identify key ion channels, particularly the L-type voltage-gated calcium channel (EGL-19) and potassium channels (SHK-1, SLO-2), which are crucial for generating action potentials.

View Article and Find Full Text PDF

Fentanyl is a potent synthetic opioid widely used perioperatively and illicitly as a drug of abuse . It is well established that fentanyl acts as a μ-opioid receptor agonist, signaling through Gα intracellular pathways to inhibit electrical excitability, resulting in analgesia and respiratory depression . However, fentanyl uniquely also triggers muscle rigidity, including respiratory muscles, hindering the ability to execute central respiratory commands or to receive external resuscitation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!