Genetic identity of YOY bluefin tuna from the eastern and western Atlantic spawning areas.

J Hered

School of Marine Science, Virginia Institute of Marine Science, College of William and Mary, PO Box 1346, Gloucester Point, Virginia 23062-1346, USA.

Published: January 2008

We used 320 young-of-the-year (YOY) specimens of the highly migratory and overfished Atlantic bluefin tuna, Thunnus thynnus, Linnaeus 1758, to evaluate the hypothesis that Atlantic bluefin tuna comprises 2 stocks with spawning grounds in the Gulf of Mexico and in the Mediterranean Sea. Significant genetic differentiation at 8 nuclear microsatellite loci (F(ST) = 0.0059, P = 0.0005) and at the mitochondrial control region (Phi(ST) = 0.0129, P = 0.0139) was detected among YOY Atlantic bluefin tuna captured on spawning grounds in the Gulf of Mexico (n = 40) versus the western (n = 255) and eastern (n = 25) basins of the Mediterranean Sea. The genetic divergence among spawning populations, combined with the extensive trans-Atlantic movements reported for juvenile and adult Atlantic bluefin tuna, indicates a high degree of spawning site fidelity. Recognition of genetically distinct populations necessitates independent management of Atlantic bluefin tuna on spawning grounds and warrants evaluation of the level of mixing of populations on feeding grounds. The genetic pattern might not have been detected unless juvenile specimens or actively spawning adults had been sampled.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jhered/esl046DOI Listing

Publication Analysis

Top Keywords

bluefin tuna
24
atlantic bluefin
20
spawning grounds
12
grounds gulf
8
gulf mexico
8
mediterranean sea
8
sea genetic
8
spawning
7
bluefin
6
tuna
6

Similar Publications

Understanding the spatial ecology of commercially exploited species is vital for their conservation. Atlantic bluefin tuna (Thunnus thynnus, ABT) are increasingly observed in northeast Atlantic waters, yet knowledge of these individuals' spatial ecology remains limited. We investigate the horizontal and vertical habitat use of ABT (158 to 241 cm curved fork length; CFL) tracked from waters off the United Kingdom (UK) using pop-up satellite archival tags (n = 63).

View Article and Find Full Text PDF

Development of Single-Nucleotide Polymorphism (SNP)-Based Species-Specific Real-Time PCR Assays for Authenticating Five Highly Priced Tuna.

Foods

November 2024

Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China.

Tuna are economically important as food resources in food markets. However, because tuna is often processed into steaks or fillets, the meat can be difficult to identify through morphological features. For effective fishery management and to protect the rights of consumers, it is necessary to develop a molecular method to accurately identify the species used in tuna products.

View Article and Find Full Text PDF
Article Synopsis
  • Biologging technology has been employed to track the behaviors and migrations of various wild animals, including a notable event involving the predation of an Atlantic bluefin tuna by an orca.
  • The study details a 19-minute predation sequence where the tuna displayed high activity levels during its capture and subsequent handling by the orca.
  • Unique datasets collected from both the tuna and orca give valuable insights into their energetic behaviors and patterns of interaction in the ocean.
View Article and Find Full Text PDF

Body size and isotopic profiles enable discrimination between long-term resident and highly migrant contingents of Atlantic bluefin tuna.

Mar Environ Res

November 2024

Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, 11510, Puerto Real, Spain.

The Atlantic bluefin tuna (ABFT) population ranges throughout the Atlantic Ocean and Mediterranean Sea, and consists of multiple contingents that use diverse habitats and show different movement patterns over the life cycle. Based on body size, elemental and isotopic data of C and N in muscle and liver, we analysed eastern-stock ABFT by comparing mid-sized individuals caught by hook-and-line gears with larger individuals harvested from traps in the Strait of Gibraltar (SoG). Our results show that trophic-related chemical markers have potential for separating temporarily sympatric contingents throughout the ABFT population range, reflecting size-dependent spatial distribution and differential patterns of residency and migration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!